giá x thỏa mãn \(-\frac{\left(-x\right)}{3}-\frac{2}{10}=\frac{1}{-5}-\frac{9}{30}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Giá trị của x thỏa mãn \(\frac{x-1}{x+2}=\frac{x-2}{x+3}\)
Giá trị của x thỏa mãn \(\frac{x+9}{x+5}=\frac{2}{7}\)
Số giá trị của x thỏa mãn \(\left|x+\frac{5}{2}\right|+\left|\frac{2}{5}-x\right|=0\)
a. giá trị của x thõa mãn : \(-\frac{\left(-x\right)}{3}-\frac{2}{10}=\frac{1}{-5}-\frac{9}{30}\)
b. Tính giá trị của \(x+\left(-\frac{3}{10}+\frac{5}{12}-\frac{4}{5}\right)\)tại x =\(\frac{-1}{3}\)
Giá trị bé nhất của \(\left|x^2+3\right|+\left|y^2+6\right|=12,5\)
Giá trị của x thỏa mãn \(\frac{x+9}{x+5}=\frac{2}{7}\)
Số giá trị của x thỏa mãn \(\left|x+\frac{5}{2}\right|+\left|\frac{2}{5}-x\right|=0\)
\(\left(\frac{x}{2}\right)^2+\left(\frac{x}{3}\right)^2+\left(\frac{x}{4}\right)^2+\left(\frac{x}{5}\right)^2+\left(\frac{x}{6}\right)^2+\left(\frac{x}{7}\right)^2\) . Tìm giá trị thỏa mãn của x
cho biểu thức \(B=\left(\frac{21}{x^2-9}-\frac{x-4}{3-x}-\frac{x-1}{3+x}\right):\left(1-\frac{1}{x+3}\right)\)
a, rút gọn B
b,tính giá trị của biểu thức B tại x thỏa mãn \(\left|2x+1\right|=5\)
đkxd: \(x\ne\left\{\pm3\right\}\)
a) B= \(\frac{21+\left(x-4\right)\left(x+3\right)-\left(x+1\right)\left(x-3\right)}{x^2-9}:\left(\frac{x+3-1}{x+3}\right)\)
=\(\frac{21+x^2-x-12-x^2+2x+3}{x^2-9}.\frac{x+3}{x+2}\)
=\(\frac{x+12}{x-3}\)
b)|2x+1|=5
<=> \(\left[\begin{array}{nghiempt}2x+1=-5\\2x+1=5\end{array}\right.\)<=> x=-3 hoặc x=2
với x=-3 thì B=\(\frac{-3}{2}\)
với x=2 thì B=-14
1)tìm các số nguyên x và y thỏa mãn:\(y^2=x^2+x+1\)
2)cho các số thực x và y thỏa mãn \(\left(x+\sqrt{a+x^2}\right)\left(y+\sqrt{a+y^2}\right)\)=a
tìm giá trị biểu thức \(4\left(x^7+y^7\right)+2\left(x^5+y^5\right)+11\left(x^3+y^3\right)+2016\)
3)cho x;y là các số thực khác 0 thỏa mãn x+y khác 0
cmr \(\frac{1}{\left(x+y\right)^3}\left(\frac{1}{x^3}+\frac{1}{y^3}\right)+\frac{3}{\left(x+y\right)^4}\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\frac{6}{\left(x+y\right)^5}\left(\frac{1}{x}+\frac{1}{y}\right)\)\(=\frac{1}{x^3y^3}\)
4)cho a,b,c là các số dương.cmr\(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}+\sqrt{\frac{b^3}{b^3+\left(a+c\right)^3}}+\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}\ge1\)
Giá trị nguyên lớn nhất của x thỏa mãn
\(\frac{-17}{21}:\left(\frac{5}{4}-\frac{2}{5}\right)< x+\frac{4}{7}< 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\) là .....
Giá trị nguyên nhỏ nhất của x thỏa mãn
\(\frac{4}{3}.1,25.\left(\frac{16}{5}-\frac{5}{16}\right)< 2x< 4-\frac{4}{3}+3-\frac{3}{2}+2\) là .......
NHỚ GHI CÁCH LÀM ĐẦY ĐỦ VÀ CHÍNH XÁC MÌNH SẼ TÍCH CHO
\(-\frac{17}{21}:\left(\frac{5}{4}-\frac{2}{5}\right)< x+\frac{4}{7}< 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\)
\(\Leftrightarrow-\frac{17}{21}:\frac{17}{20}< x+\frac{4}{7}< \frac{12}{12}-\frac{6}{12}+\frac{4}{12}-\frac{3}{12}\)
\(\Leftrightarrow-\frac{17}{21}.\frac{20}{17}< x+\frac{4}{7}< \frac{7}{12}\)
\(\Leftrightarrow-\frac{20}{21}< x+\frac{4}{7}< \frac{7}{12}\)
\(\Leftrightarrow-\frac{20}{21}< x< \frac{1}{84}\)
\(\Leftrightarrow-\frac{80}{84}< x< \frac{1}{84}\)
\(\Leftrightarrow-80< x< 1\Leftrightarrow x\in\left\{-79;-78;...;0\right\}\)
mà để Giá trị nguyên lớn nhất của x
\(\Rightarrow x=-1\)
Giá trị x lớn nhất thỏa mãn:\(\frac{9}{\left|x+1\right|}+\frac{\left|x+1\right|}{9}=2\)
ta có \(\frac{9}{\left|x+1\right|}\ge1;\frac{\left|x+1\right|}{9}\ge1\left(1\right)\)
vì \(\frac{9}{\left|x+1\right|}+\frac{\left|x+1\right|}{9}=2\left(2\right)\)
\(\left(1\right)\left(2\right)\Leftrightarrow\frac{9}{\left|x+1\right|}=\frac{\left|x+1\right|}{9}=1\Leftrightarrow\left|x+1\right|=9\Leftrightarrow\hept{\begin{cases}x+1=-9\Rightarrow x=-10\\x+1=9\Rightarrow x=8\end{cases}}\) vậy GTLN của x=8
Khi \(x\ge-1\) ta có phương trình: \(\frac{9}{x+1}+\frac{x+1}{9}=2\Leftrightarrow\frac{81+x^2+2x+1}{9\left(x+1\right)}=2\Leftrightarrow\frac{x^2+2x+82}{9x+9}=2\)
\(\Leftrightarrow x^2+2x+82-18x-18=0\Leftrightarrow x^2-16x+64=0\Leftrightarrow x=8\left(tmđk\right)\)
Khi \(x< -1\), ta có phương trình \(\frac{9}{x+1}+\frac{x+1}{9}=-2\Leftrightarrow\frac{81+x^2+2x+1}{9\left(x+1\right)}=-2\Leftrightarrow\frac{x^2+2x+82}{9x+9}=-2\)
\(\Leftrightarrow x^2+2x+82+18x+18=0\Leftrightarrow x^2+20x+100=0\Leftrightarrow x=-10\left(tmđk\right)\)
Vậy x lớn nhất thỏa mãn là x = 8.
bao quynh Cao: Đánh giá (1) của em không đúng nhé :)
co biểu thức P=\(\left(\frac{\sqrt{x}+3}{\sqrt{x}+2}+\frac{4x\sqrt{x}+3x+9}{x-\sqrt{x}-6}\right):\left(\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{2\sqrt{x}+3}{x+5\sqrt{x}+6}\right)\)
tìm giá trị của m để có giá trị x>1 thỏa mãn: \(m\left(\sqrt{x}-3\right)P=12m\sqrt{x}-4\)