chứng minh rằng 7+7^2+7^3+...+7^4n chia hết cho 400 (n thuộc số tn)
chứng minh rằng 7+7^2+7^3+...+7^4n chia hết cho 400 (n thuộc số tn)
Chứng minh rằng: Tổng A = 7 + 7^2 + 7^3 + 7^4 + ... + 7^4n chia hết cho 400 (n thuộc N)
Ta có: \(A=7+7^2+7^3+.....+7^{4n}\) \(\left(n\in N\right)\)
\(\Leftrightarrow A=7\left(1+7+7^2+7^3\right)+......+7^{4n-3}\left(1+7+7^2+7^3\right)\)
\(\Leftrightarrow A=7.400+7^5.400+....+7^{4n-3}.400\)
\(\Leftrightarrow\left(7+7^5+....+7^{4n-3}\right).400\) chia hết cho 400
Vậy A chia hết cho 400
Bạn Nguyễn Đức Tiến có thể viết rõ hộ mình được không ạ? Mình chưa hiểu
Chứng minh rằng Tổng A=7+7 mũ 2+7 mũ 3+7 mũ 4+....+7 mũ 4n chia hết cho 400 (n thuộc N)
Chứng minh rằng: \(A=7+7^2+7^3+...+7^{4n}\)chia hết cho 400(với n là các số tự nhiên thuộc N)
A=(7+7^2+7^3+7^4)+(7^5+7^6+7^7+7^8)+........+(7^4n-3 +7^4n-2 +7^4n-1 +7^4n)
A=7.(1+7+7^2+7^3)+7^5(1+7+7^2+7^3)+..........+7^4n-3.(1+7+7^2+7^3)
A=7.400+7^5.400+.......7^4n-3.400
Vậy A chia hết cho 400
a, Tìm một số có 3 chữ số biết rằng số đó chia hết cho 18 và các chữ số của nó tỉ lệ với 1,2,3
b, Chứng minh rằng: tồng A = 7 + 72 + 73 + 74 + ... + 74n chia hết cho 400 (n thuộc N)
Chứng minh rằng tổng
A=7+7^2+7^3+7^4+...+7^4n chia hết cho 400
Chứng minh rằng : Tổng A = 7 + 72 + 73 + 74 + .................... + 74n chia hết cho 400 ( n là số tự nhiên )
chứng tỏ rằng D=7^1+7^2+7^3+7^4+.............+7^4n-1+7^4n chia hết cho 400
\(D=\left(7^1+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)+...+\left(7^{4n-3}+7^{4n-2}+7^{4n-1}+7^{4n}\right)\)
\(\Rightarrow D=7^1.\left(1+7+7^2+7^3\right)+7^5.\left(1+7+7^2+7^3\right)+...+7^{4n-3}.\left(1+7+7^2+7^3\right)\)
\(\Rightarrow D=7^1.400+7^5.400+...+7^{4n-3}.400=400.\left(7^1+7^5+...+7^{4n-3}\right)\)
Vậy D chia hết cho 400
Chứng minh rằng
71 + 72 + 73+ 74 + ......... +74n-1 +74n chia hết cho 400
\(7^1+7^2+...+7^{4n-1}+7^{4n}\)
\(=\left(7^1+7^2+7^3+7^4\right)+...+\left(7^{4n-3}+7^{4n-2}+7^{4n-1}+7^{4n}\right)\)
\(=7^1\left(1+7+7^2+7^3\right)+...+7^{4n-3}\left(1+7+7^2+7^3\right)\)
\(=7^1\cdot400+...+7^{4n-3}\cdot400\)
\(=400\left(7^1+...+7^{4n-3}\right)⋮400\)
71 + 72 + 73 + 74 + ... + 74n - 1 + 74n
= (71 + 72 + 73 + 74) + (75 + 76 + 77 + 78) + ... + (74n - 3 + 74n - 2 + 74n - 1 + 74n)
= 71 . (1 + 7 + 72 + 73) + 75 . (1 + 7 + 72 + 73) + ... + 74n - 3 . (1 + 7 + 72 + 73)
= 71 . 400 + 75 . 400 + ... + 74n - 3 . 400
= 400 . (71 + 75 + ... + 74n - 3)
Vì 400 \(⋮\)400 nên suy ra 400 . (71 + 75 + ... + 74n - 3) \(⋮\)400
Vậy ....
~.~