Chứng minh phân số sau tối giản: 5a-8 phần 3a-5 với a thuộc Z
chứng minh phân số 4m+8 phần 2m+3 là phân số tối giản với mọi m thuộc z
Đặt d = ( 4m + 8 , 2m + 3 )
\(\Rightarrow4m+8⋮d\)
\(2m+3⋮d\)\(\Rightarrow2\left(2m+3\right)⋮d\)\(\Rightarrow4m+6⋮d\)
\(\Rightarrow\left(4m+8-4m-6\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\inƯC\left(2\right)\)
\(\Rightarrow d\in\left(1;2\right)\)
Do 2m + 3 là số lẻ nên d là số lẻ
\(\Rightarrow d=1\)
Vậy \(\left(4m+8;2m+3\right)=1\)
Hay \(\frac{4m+8}{2m+3}\)là phân số tối giản
Đặt d = ( 4m + 8 , 2m + 3 )
\(\Rightarrow4m+8⋮d\)
\(2m+3⋮d\)\(\Rightarrow2\left(2m+3\right)⋮d\)\(\Rightarrow4m+6⋮d\)
\(\Rightarrow\left(4m+8-4m-6\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\inƯC\left(2\right)\)
\(\Rightarrow d\in\left(1;2\right)\)
Do 2m + 3 là số lẻ nên d là số lẻ
\(\Rightarrow d=1\)
Vậy \(\left(4m+8;2m+3\right)=1\)
Hay \(\frac{4m+8}{2m+3}\)là phân số tối giản
Đặt d = ( 4m + 8 , 2m + 3 )
\(\Rightarrow4m+8⋮d\)
\(2m+3⋮d\)\(\Rightarrow2\left(2m+3\right)⋮d\)\(\Rightarrow4m+6⋮d\)
\(\Rightarrow\left(4m+8-4m-6\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\inƯC\left(2\right)\)
\(\Rightarrow d\in\left(1;2\right)\)
Do 2m + 3 là số lẻ nên d là số lẻ
\(\Rightarrow d=1\)
Vậy \(\left(4m+8;2m+3\right)=1\)
Hay \(\frac{4m+8}{2m+3}\)là phân số tối giản
chứng minh các phân số sau là phân số tối giản với n thuộc Z a)n+5/n+6
\(a)\frac{n+5}{n+6}\)
Có: \(\frac{n+5}{n+6}=\frac{n+6-1}{n+6}=\frac{n+6}{n+6}-\frac{1}{n+6}=1-\frac{1}{n+6}\)
Để \(\frac{n+5}{n+6}\inℤ\Rightarrow n+6\inƯ\left(1\right)\)
\(Ư\left(1\right)\in\left\{\pm1\right\}\Rightarrow n+6\in\left\{1;-1\right\}\)
\(\Rightarrow n\in\left\{-5;-7\right\}\)
chứng minh phân số với mọi n thuộc Z sau là phân số tối giản: n+3/2n+5
Giải
Đặt \(\left(n+3,2n+5\right)=d\)
\(\Leftrightarrow\hept{\begin{cases}\left(n+3\right)⋮d\\\left(2n+5\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}\left[2\left(n+3\right)\right]⋮d\\\left(2n+5\right)⋮d\end{cases}}\)
\(\Leftrightarrow\left[2\left(n+3\right)-\left(2n+5\right)\right]⋮d\)
\(\Leftrightarrow\left[2n+6-2n-5\right]⋮d\)
\(\Leftrightarrow1⋮d\Leftrightarrow d=1\)
Vậy \(\frac{n+3}{2n+5}\) là phân số tối giản (đpcm)
Chứng minh rằng nếu (a + 1; b -1) = 1 thì phân số sau tối giản:\(\frac{3a+5b+2}{5a+8b+3}\)
bài 1 chứng minh rằng các phân số sau đây tối giản với mọi n thuộc z
a) n + 3 phần n + 2
b) 2 - 3n phần 3n - 1
Chứng minh rằng nếu (a + 1; b -1) = 1 thì phân số sau tối giản:
\(A=\frac{3a+5b+2}{5a+8b+3}\)
3a+5b+2/5a+8b+3 là phân số tối giản
Chứng minh rằng: phân số n/n+1 (n thuộc Z) tối giản
b) CMR: Phân số 246913579 / 123456790 tối giản
c) CMR: các phân số 2m+3 / m+1 ; 4m+8/ 2m+3 là các phân số tối giản với mọi m thuộc Z
Giải chi tiết nha!
bài 4 chứng minh rằng cá phân số sau đây tối giản với mọi n thuộc Z
a) 21n = 4 phần 14n + 3
b)21n + 1 phần 2n ( n = 1)
bài 1: với mọi số tự nhiên n chứng minh các phân số sau là phân số tối giản
A=2n+1/2n+2
B=2n+3/3n+5
Bài 2:
a) Cho phân số: N=5n+7/2n+1( n thuộc Z, n khác -1/2). Tìm n để N là phân số tối giản
b) Cho phân số: P=5-2n/4n+5 ( n thuộc Z, n khác -5/4). Tìm n để P là phân số tối giản
giúp mk với
mk sẽ tick cho!!
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
các bn giải hộ mk bài 2 ik
thật sự mk đang rất cần nó!!!