viết phương trình mặt trung trực của đoạn AB biết A(2;1;0) , B(0;3;2)
Viết phương trình mặt phẳng trung trực của đoạn thẳng AB với A(1; -2; 4), B(3; 6; 2).
Đoạn thẳng AB có trung điểm là I(2; 2; 3)
Mặt phẳng trung trực của đoạn AB đi qua I và có vecto pháp tuyến là n → = IB → = (1; 4; −1). Phương trình mặt phẳng trung trực của đoạn AB là:
1(x – 2) + 4(y – 2) – 1(z – 3) = 0 hay x + 4y – z – 7 = 0.
Cho 2 điểm A(1;2;3) và B(5;6;7). Viết phương trình mặt phẳng trung trực của đoạn AB
Từ giả thiết suy ra \(\overrightarrow{AB}=\left(4;4;4\right)=4\left(1;1;1\right)\)
Gọi (P) là mặt phẳng trung trực của đoạn AB. Khi đó, (P) đi qua trung điểm M của AB và nhận vecto \(\overrightarrow{n}=\frac{1}{4}\overrightarrow{AB}\) làm vecto pháp tuyến. Do M là trung điểm AB nên M(3;4;5).
Khi đó , mặt phẳng (P) cần tìm có phương trình :
\(1\left(x-3\right)+1\left(y-4\right)+1\left(z-5\right)=0\)
hay \(x+y+z-12=0\)
Viết phương trình mặt phẳng trung trực của đoạn thẳng AB với A(2; 3; 7), B(4; 1; 3)
Trong không gian Oxyz, cho hai điểm A(1;5;-2), B(3;1;2). Viết phương trình mặt phẳng trung trực của đoạn thẳng AB
A. 2x + 3y + 4 = 0
B. x - 2y + 2z - 8 = 0
C. x- 2y + 2z + 8 = 0
D. x - 2y + 2x + 2z + 4 - 0
Trong không gian với hệ tọa độ 0xyz , cho 2 điểm A 0 ; 1 ; 2 , B 0 ; − 1 ; 2 . Viết phương trình mặt phẳng trung trực của đoạn AB
A. z − 2 = 0
B. x − z + 2 = 0
C. x = 0
D. y = 0
Đáp án D
Trung điểm của AB là: I 0 ; 0 ; 2 ; n → = I A → = 0 ; 1 ; 0 ⇒ P T mặt phẳng trung trực của đoạn AB qua I và vuông góc với AB có PT là: y = 0
Trong không gian với hệ tọa độ Oxyz, cho 2 điểm A(0;1;2), B(0;-1;2). Viết phương trình mặt phẳng trung trực của đoạn AB
A. z -2 =0
B. x -z +2 =0
C. x =0
D. y =0
Đáp án D
Trung điểm của là:
=>PT mặt phẳng trung trực của đoạn AB qua I và vuông góc với AB có PT là: y =0
Bài tập 6. Trong mặt phẳng Oxy, cho hai đường thẳng Delta_{1} / 2 * x - y - 2 = 0 , Delta_{2} / x - y + 3 = 0 và hai điểm A(-1;3) , B(0;2) . a. Viết phương trình đường thẳng qua AB. b. Viết phương trình đường thẳng trung trực của đoạn thẳng AB . c. Viết phương trình đường thẳng qua 4 và song song với Delta_{1} . d. Viết phương trình đường thẳng qua 4 và vuông góc với Delta_{1} e. Viết phương trình đường thẳng qua B và có hệ số góc k = - 3 . f. Tính côsin góc giữa hai đường thẳng Delta_{1}, Delta_{2} g. Tính d(A, Delta_{2}) . h. Viết phương trình đường thẳng qua 4 và tạo với Delta_{1} một góc c biết cos varphi = 1/(sqrt(5)) i. Tìm tọa độ hình chiếu vuông góc của 4 trên Delta_{2} j. Tìm tọa độ điểm B^ prime d hat oi xứng với B qua Delta_{2}
Trong không gian với hệ tọa độ Oxyz, cho 2 điểm A(2;0;0) và B(1;1;-1). Viết phương trình mặt phẳng trung trực (P) của đoạn thẳng AB và phương trình mặt cầu tâm 0, tiếp xúc với (P)
Gọi M là trung điểm của AB, ta có \(M=\left(\frac{3}{2};\frac{1}{2};-\frac{1}{2}\right)\)
Vì (P) là mặt phẳng trung trực của AB nên (P) đi qua M và \(\overrightarrow{AB}=\left(-1;1;-1\right)\) là một vecto pháp tuyến của (P)
Suy ra, phương trình của (P) là : \(\left(-1\right)\left(x-\frac{3}{2}\right)+\left(y-\frac{1}{2}\right)+\left(-1\right)\left(z+\frac{1}{2}\right)=0\)
hay : \(2x-2y+2z-1=0\)
Ta có : \(d\left(O,\left(P\right)\right)=\frac{\left|-1\right|}{\sqrt{2^2+\left(-2\right)^2+2^2}}=\frac{1}{2\sqrt{3}}\)
Do đó phương trình mặt cầu tâm O , tiếp xúc với (P) là \(x^2+y^2+z^2=\frac{1}{12}\)
hay : \(12x^2+12y^2+12z^2-1=0\)
Trong mặt phẳng tọa độ Oxy, cho điểm A(1;1) và B(3;1). Viết phương trình đường trung trực của đoạn thẳng AB.
Gọi M(2;1) và d lần lượt là trung điểm và đường trung trực của AB.
Một vectơ pháp tuyến của d là \(\overrightarrow{n}\)=\(\overrightarrow{AB}\)=(2;0).
Phương trình cần tìm:
d: 2.(x-2)+0.(y-1)=0 \(\Rightarrow\) x=2.