Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hang Nga Pretty
Xem chi tiết
HOANGTRUNGKIEN
2 tháng 2 2016 lúc 19:28

minh moi hoc lop 6

Nguyễn Ngọc Linh
Xem chi tiết
Minh Tâm
8 tháng 3 2020 lúc 8:36

Ta có \(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\cdot\cdot\cdot\left(3^{64}+1\right)\)

\(\Rightarrow2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\cdot\cdot\cdot\left(3^{64}+1\right)\)

\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\cdot\cdot\cdot\left(3^{64}+1\right)\)

\(=\left(3^4-1\right)\left(3^4+1\right)\cdot\cdot\cdot\left(3^{64}+1\right)\)

\(=\left(3^{64}-1\right)\left(3^{64}+1\right)=\left(3^{128}-1\right)\)

\(\Rightarrow A=\frac{3^{128}-1}{2}\)

Khách vãng lai đã xóa
Kudo Shinichi
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
2 tháng 8 2017 lúc 15:41

Ta có : A = (3 + 1) (32 + 1) (34 + 1) ... (364 + 1)

=> 8A = (32 - 1)(32 + 1)(34 + 1)......(364 + 1)

=> 8A = (3- 1)(34 + 1)......(364 + 1)

=> 8A = (364 - 1)(364 + 1)

=> A = \(\frac{3^{64}-1}{8}\)

Linh Chi
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 8 2023 lúc 22:35

a: \(A=4\cdot\dfrac{5}{2}\sqrt{x}-\dfrac{8}{3}\cdot\dfrac{3}{2}\sqrt{x}-\dfrac{4}{3x}\cdot\dfrac{3x}{8}\cdot\sqrt{x}\)

\(=10\sqrt{x}-4\sqrt{x}-\dfrac{1}{2}\sqrt{x}\)

\(=\dfrac{11}{2}\sqrt{x}\)

b: \(B=\dfrac{y}{2}+\dfrac{3}{4}\cdot\left|2y-1\right|-\dfrac{3}{2}\)

\(=\dfrac{y}{2}+\dfrac{3}{4}\left(1-2y\right)-\dfrac{3}{2}\)

=1/2y+3/4-3/2y-3/2

=-y-3/4

Tuấn Nguyễn
Xem chi tiết
Đào Trọng Luân
19 tháng 5 2018 lúc 19:12

A = (3 + 1) (32 + 1) (34 + 1) ... (364 + 1)

2A = (3 - 1)(3 + 1) (32 + 1) (34 + 1) ... (364 + 1)

2A = (32 - 1)(32 + 1) (34 + 1) ... (364 + 1)

= (34 - 1)(34 + 1) ... (364 + 1)

= (38 - 1)(38 + 1)(316+1)(332+1)(364+1)

= (316-1)(316+1)(332+1)(364+1)

= (332-1)(332+1)(364+1)

= (364-1)(364+1)

= (3128-1)

=> A = \(\frac{3^{128}-1}{2}\)

nguyễn thị lan hương
19 tháng 5 2018 lúc 19:12

\(2A=2\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

        \(=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

        áp dụng hằng đẳng thức \(a^2-b^2\)

ta có 2A=\(3^{128}-1\)=>A=\(\frac{3^{128}-1}{2}\)

Nguyễn Thị Ngọc Mai
Xem chi tiết
Trần Thị Loan
27 tháng 2 2015 lúc 15:15

A = (22 - 1) (22 +1)(24 +1)...(264 +1) + 1 = (24 - 1)(24 +1)...(264 +1) + 1  = (28 -1)...(264 +1) + 1 = 2128 -1 + 1 = 2128

Karry Wang
Xem chi tiết
Trương Quang Khải
5 tháng 6 2017 lúc 17:33

Đặt biểu thức đã cho là A.

Ta có: 2A = (3 - 1) * (3 + 1) * (3^2 + 1) * .... * (3^64 + 1)

= (3^2 - 1) * (3^2 + 1) * ... * (3^64 + 1) (hằng đẳng thức a^2 - b^ 2 = (a+b)(a-b))

Rút gọn triệt tiêu ta được 2A=3^64 - 1

=> A = (3^64 - 1)/2

Dương ♡
Xem chi tiết
Ngô phương thảo
14 tháng 2 2020 lúc 12:00

\(A=\left(3+1\right)\left(3^2+1\right)...\left(3^{64}+1\right)\)

\(\Leftrightarrow\left(3-1\right)A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)...\left(3^{64}+1\right)\)

\(\Leftrightarrow2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(\Leftrightarrow2A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)

\(\Leftrightarrow2A=3^{128}-1\)

\(\Leftrightarrow A=\frac{3^{128}-1}{2}\)

Khách vãng lai đã xóa
luu pham thu huyen
Xem chi tiết
kagamine rin len
30 tháng 5 2016 lúc 17:36

B=3.(2^2+1)(2^4+1)...(2^64+1)

=(2^2-1)(2^2+1)(2^4+1)...(2^64+1)

=(2^4-1)(2^4+1)...(2^64+1)

=(2^8-1)...(2^64+1)

.......

=(2^64-1)(2^64+1)

=2^128-1