Cho tam giác ABC có H là trung điểm của BC . Các đường chung tuyến BM , CN cắt nhau tại G. Biết AH = 12cm; Độ dài đoạn AG bằng
A : 8cm B: 7cm C: 9cm D : 6 cm
Cho tam giác ABC, các đường trung tuyến BM và CN cắt nhau ở G. Gọi H là trung điểm của GB, K là trung điểm của GC
cho tam giác ABC, các đường trung tuyến BM và CN cắt nhau ở G. Gọi H là trung điểm của GB, K là trung điểm của GC.
a,cho BC=10cm.Tính MN
b, Chứng minh MNHK là hình bình hành
a: Xét ΔABC có
M là trung điểm của AC
N là trung điểm của AB
Do đó: MN là đường trung bình của ΔABC
Suy ra: \(MN=\dfrac{BC}{2}=5\left(cm\right)\)
cho tam giác ABC, AB=AC, 2 đường trung tuyến BM và CN cắt nhau tại G
a) CM: tam giác AMB= tam giác ANC
b) AG cắt BC tại H. CM: AH vuông góc với BC
c) Tính AG biết BC=12cm, AC=10cm
a) Xét \(\Delta ABC\)có : \(AB=AC\Rightarrow\Delta ABC\)cân
Có BM và CN là đường trung tuyến của tam giác \(\Rightarrow AM=AN=BN=CN\)
Xét \(\Delta AMB\)và \(\Delta ANC\)có : \(\hept{\begin{cases}AM=AN\left(cmt\right)\\\widehat{mAn}:chung\\AB=AC\left(gt\right)\end{cases}\Rightarrow\Delta AMB=\Delta ANC\left(c\cdot g\cdot c\right)}\)
b) Vì 2 đường trung tuyến BM và CN cắt nhau tại G => G là trọng tâm của \(\DeltaÂBC\)
=> AG là đường trung tuyến còn lại
mà \(\Delta ABC\)cân => AG vừa là đường trung tuyến và vừa là đường cao
\(\Rightarrow AG\perp BC\)hay \(AH\perp BC\)
Vì AH vừa là đường cao vừa là trung tuyến => \(BH=CH=\frac{1}{2}BC=\frac{1}{2}.12=6\left(cm\right)\)
Áp dụng định lý PYTAGO trong tam giác vuông \(AHC\)( do \(AH\perp BC\)) có :
\(AC^2=AH^2+HC^2\)
\(\Leftrightarrow AH^2=AC^2-HC^2=10^2-6^2=100-36=64\)
\(\Rightarrow AH=8\left(cm\right)\)
Theo tính chất 3 đường trung tuyến => \(\frac{AG}{AH}=\frac{2}{3}\Leftrightarrow\frac{AG}{8}=\frac{2}{3}\Leftrightarrow AG=\frac{8.2}{3}=\frac{16}{3}\left(cm\right)\)
cho tam giác ABC, hai đường trung tuyến BM và CN cắt nhau tại G. Biết BC =10cm, BM =12cm, CN =9cm.Tính diện tíchtam giác ABC và diện tích tứ giác BNMC
Cho tam giác ABC có BM và Cn là đường trung tuyến cắt nhau tại G.
a) Tính MN ? Biết BC = 12cm
b) Gọi E, F lần lượt là trung điểm của GB, GC. Chứng minh: EF // MN. EF = MN
GT/KL: Bn tự lm nhé
CM:
Xét tam giác ABC, ta có: AN =NB(gt) ; AM= MC(gt) => MN là đường trung bình của tam giác ABC
=> MN = \(\frac{1}{2}\)BC=6(cm); MN // BC (1)
b)Xét tam giác GBC,ta có: GE =EB (gt); GF=FC(gt)=> EF là đường trung bình của tam giác GBC
=> EF = \(\frac{1}{2}\)BC= 6(cm); EF // BC (2)
Từ (1) và (2) => EF // MN; EF =MN
Cho tam giác ABC có hai đường trung tuyến BM và CN cắt nhau tại G. Biết BM = CN. Chứng minh A G ⊥ B C .
Cho tam giác ABC cân tại A. có AB = AC = 34 cm, BC = 32 cm. Từ A vẽ AH song song BC tại H.
a) Chứng minh tam ABH= tam giác ACH
b) Vẽ đường trung tuyến BM của tam giác ABC, BM cắt AH tại G. Chứng minh AH là đường trung tuyến và G là trọng tâm tam giác ABC
Sao vi phạm vậy bạn " Lê Đông Quân "
tnlvprvth học lớp cao
Cho tam giác ABC cân tại A vẽ hai đường trung tuyến BM và CN cắt nhau tại G
1 chứng minh BM=CN
2 chứng minh AG là tia phân giác của góc BAC
3 chứng minh MN song song với BC
4 gọi H là giao điểm của AG và BC chứng minh AH vuông góc với BC
Cho tam giác ABC các đường trung tuyến BM, CN cắt nhau tại G. K là điểm trên BC, đường thẳng qua K song song với CN cắt AB ở D, đường thẳng qua K song song với BM cắt AC ở E. Gọi I là giao điểm của KG và DE. CM: I là trung điểm của DE