71 + 60 . 5 = \(\frac{x+120}{x}\)+ 240
Giải phương trình: \(\frac{60}{\frac{120}{x}-4}+\frac{60}{\frac{120}{x}-5}=x\)
\(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne30\\x\ne24\end{cases}}\)
Ta có \(\frac{60}{\frac{120}{x}-4}+\frac{60}{\frac{120}{x}-5}=x\)
\(\Leftrightarrow\frac{60}{\frac{120-4x}{x}}+\frac{60}{\frac{120-5x}{x}}=x\)
\(\Leftrightarrow\frac{60x}{120-4x}+\frac{60x}{120-5x}=x\)
\(\Leftrightarrow\frac{60}{120-4x}+\frac{60}{120-5x}=1\left(Do\text{ }x\ne0\right)\)
\(\Leftrightarrow\frac{15}{30-x}=1-\frac{12}{24-x}\)
\(\Leftrightarrow\frac{15}{30-x}=\frac{24-x-12}{24-x}\)
\(\Leftrightarrow\frac{15}{30-x}=\frac{12-x}{24-x}\)
\(\Leftrightarrow360-15x=\left(12-x\right)\left(30-x\right)\)
\(\Leftrightarrow360-15x=360-42x+x^2\)
\(\Leftrightarrow x^2-27x=0\)
\(\Leftrightarrow x\left(x-27\right)=0\)
\(\Leftrightarrow x=27\left(Tm\text{ }ĐKXĐ\right)\)
(\(\frac{x}{40}\)+\(\frac{240-x}{60}\)) + (\(\frac{x}{45}\)+\(\frac{240-x}{50}\)) = 0,25
c) x ∈ BC(12; 5; 8) và 60 ≤ x ≤ 240
Lời giải:
$12=2^2.3$
$5=1.5$
$8=2^3$
$\Rightarrow \text{BCNN(12,5,8)}=2^3.3.5=120$
$x\in \text{BC(12,5,8)}$ nên $x\in \left\{120; 240; 360;...\right\}$
Mà $60\leq x\leq 240$ nên $x\in \left\{120; 240\right\}$
Tìm x thuộc Z, biết: \(1+\frac{-1}{60}+\frac{19}{120}
a) X x 5 - X x 2 = 120 b) X x 13 - X x 10 = 240 c) 28 x X - X x 18 = 250
d) 5 x X - X x 2 = 36
a: =>x(5-2)=120
=>3x=120
=>x=40
b: =>x(13-10)=240
=>3x=240
=>x=80
c; =>10x=250
=>x=25
d: =>3x=36
=>x=12
Tim x biet
\(1+\frac{-1}{60}+\frac{19}{120}< \frac{x}{36}< \frac{58}{90}+\frac{59}{72}+\frac{-1}{60}\)
\(1+\frac{-1}{60}+\frac{19}{120}< \frac{x}{36}< \frac{58}{90}+\frac{59}{72}+\frac{-1}{60}\)
=> \(\frac{137}{120}< \frac{x}{36}< \frac{521}{360}\)
=> \(\frac{411}{360}< \frac{10x}{360}< \frac{521}{360}\)
=> 411 < 10x < 521
=> x \(\in\){ 42,43,44,...,52}
tìm x thuộc z biết 1 +\(\frac{1}{60}\)+ \(\frac{19}{120}< \frac{x}{36}+\frac{-1}{60}< \frac{58}{90}+\frac{59}{72}+\frac{-1}{60}\)
\(\frac{240}{x-12}-\frac{240}{x}=\frac{5}{3}\)
Giải pt
\(\frac{240}{x-12}-\frac{240}{x}=\frac{5}{3}\)
\(\Leftrightarrow\frac{240}{x-12}-\frac{240}{x}=\frac{5}{3}\left(x\ne12,x\ne0\right)\)
\(\Leftrightarrow\frac{240}{x-12}-\frac{240}{x}-\frac{5}{3}=0\)
\(\Leftrightarrow\frac{720x-720x+8640-5x^2+60x}{3x\left(x-12\right)}=0\)
\(\Leftrightarrow8640-5x^2+60x=0\)
\(\Leftrightarrow5\left(1728-x^2+12x\right)=0\)
\(\Leftrightarrow5\left(-x^2+12x+1728\right)=0\)
\(\Leftrightarrow5\left(-x^2+48x-36x+1728\right)=0\)
\(\Leftrightarrow5\left[-x\left(x-48\right)-36\left(x-48\right)\right]=0\)
\(\Leftrightarrow5\left[-\left(x-48\right)\right].\left(x+36\right)=0\)
\(\Leftrightarrow-5\left(x-48\right).\left(x+36\right)=0\)
\(\Leftrightarrow\left(x-48\right)\left(x+36\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-48=0\\x+36=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=48\\x=-36\end{matrix}\right.,x\ne12,x\ne0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=48\\x=-36\end{matrix}\right.\)
240-2*[240-2*(2*x-120)]=40
Tim x