CMR : A= 2^2016+2^2019 chia hết cho 3072
CMR 1/2(7^2016^2019-3^8^2018) chia hết cho 5
Ta thấy 20162019 ⋮ 4; 82018 ⋮ 4. Đặt 20162019 = 4k; 82018 = 4h (k,h∈N)
.
Ta có: 2A=74k−34h=2401k−81h=...1−(...1)=...0
Từ đó 2A chia hết cho 5.
Mà A là số tự nhiên và (2; 5) = 1 nên A chia hết cho 5.
Tìm x \(\in\) Z sao cho 3072 chia hết cho ( x+2015)2 + I x+2016 I
A=7^2020^2019-3^2016^2015/5 . chứng tỏ A chia hết cho 2
A=7 mu 2020 mu 2019-3 mu 2016 mu 2015 :5 chung to A la so chan
cho đa thức: f(x)=ax^2+bx+c chia hết cho 2016. CMR: a, b, c chia hết cho 2016
Cho S= 2+2.2^2+3.2^3+...+2019.2^2019
a, Chứng tỏ S+2016 chia hết cho 2^2020+1
b, Tìm số dư khi chia S cho 8
A = 7^2020^2019 - 3^2016^2015 phần 5
chứng tỏ A chia hết cho 2
giúp mk với mn ơiiiiii
\(A=\dfrac{7^{2020^{2019}}-3^{2016^{2015}}}{5}\)
Xét \(X=2020^{2019}\) và \(Y=2016^{2015}\). Khi đó \(A=\dfrac{7^X-3^Y}{5}\).
Vì cơ số của X tận cùng bằng 0 nên 0.0.0...0 luôn tận cùng bằng 0. Suy ra chữ số tận cùng của X là 0.
Ngoài ra, 20202019 sẽ có 2019 chữ số 0 ở sau cùng, suy ra hai chữ số tận cùng của X là những chữ số 0. Suy ra X chia hết cho 4.
Vì cơ số của Y tận cùng bằng 6 nên 6.6.6...6 luôn tận cùng bằng 6. Suy ra chữ số tận cùng của Y là 6.
Dễ dàng nhận thấy rằng 2016 chia hết cho 4, suy ra Y cũng chia hết cho 4 (y ϵ N*).
Do đó \(A=\dfrac{7^X-3^Y}{5}=\dfrac{7^{\overline{...0}}-3^{\overline{...6}}}{5}=\dfrac{7^{4x}-3^{4y}}{5}\)
Ta lập bảng
n | 1 | 2 | 3 | 4 | ... |
Chữ số tận cùng của 7n | 7 | 9 | 3 | 1 | ... |
Chữ số tận cùng của 3n | 3 | 9 | 7 | 1 | ... |
Dãy trên sẽ lặp lại với chu kì là 4 số hạng. Khi đó chữ số tận cùng của 74n; 34n lần lượt giống chữ số tận cùng của 7n; 3n.
Suy ra \(A=\dfrac{\overline{...1}-\overline{...1}}{5}=\dfrac{\overline{...0}}{5}\).
Dễ nhận thấy rằng A chia hết cho 5A chia hết cho 10. Mà 10 = 5.2 nên 5A cũng chia hết cho 2. Lại có 5 không chia hết cho 2 nên chỉ có trường hợp A chia hết cho 2 (đpcm)
CMR :
a ) 5 ^ 2016 chia hết cho 5
b) 5 ^ 2016 - 1 chia hết cho 2
c ) 3 ^ 16 - 1 chia hết cho 2 và 5
ai làm sớm mình tick cho
a) vì 5 chia hết cho 5 nên 52016 chia hết cho 5.
b) ta có:
51 = 5 (lẻ)
52 = 25 (lẻ)
53 = 125 (lẻ)
-----------------
=> 5 mũ bao nhiêu cũng có kq là 5 (lẻ)
mà lẻ - 1 = chẵn
=> 52016 - 1 chia hết cho 2
c) ta có:
31 = 3
32 = 9
33 = 27
34 = 81
35 = ...3
-------------
nếu tính tiếp thì chữ số tận cùng sẽ lặp lại theo chu kì 3 - 9 - 7 - 1
316 = ...........1 vì số mũ là 4k
=> 316 - 1 = ............1 - 1 = .........0
mà số có chữ số tận cùng là 0 thì chia hết cho 2 và 5.
=> 316 - 1 chia hết cho 2 và 5
a/ Vì 5 có chữ số tận cùng bằng 5 nên 52016 có tận cùng bằng 5. Vậy 52016 chia hết cho 5.
b/ Vì 52016 có chữ số tận cùng bằng 5, nên 52016 - 1 có tận cùng bằng 4. Vậy 52016 - 1 chia hết cho 2.
cần giúp:chứng minh2^2016+2^2017+2^2018+2^2019 chia hết cho 30
2^2016+2^2017+2^2018+2^2019=2^2015*(2+2^2+2^3+2^4)=30*2^2015 chia hết cho 30
2^2016+2^2017+2^2018+2^2019
=2^2016*(1+2+2^2+2^3)
=2^2016*(1++2+4+8)
=2^2016*15
=2^2015*2*15
=2^2015*30 chia hết cho 30
cho a=7+7^2+7^3+...+7^2019
cmr a không chia hết cho 50
\(a=7+\left(7^2+7^4\right)+\left(7^3+7^5\right)+...\left(7^{2017}+7^{2019}\right)\)
\(a=7+7^2.\left(1+7^2\right)+7^3.\left(1+7^2\right)+...+7^{2017}.\left(1+7^2\right)\)
\(a=7+7^2.50+7^3.50+...+7^{2017}.50\)
\(a=7+50.\left(7^2+7^3+...+7^{2017}\right)\)
\(7⋮̸50,50.\left(7^2+7^3+...+7^{2017}\right)⋮50=>a⋮̸50\)