Cho a,b,c là độ dài các cạnh của một tam giác có chu vi bằng 1. Hãy chứng minh: ab+ac+bc>abc
Cho a,b,c là độ dài 3 cạnh của 1 tam giác có chu vi bằng 2.Chứng minh rằng 1+abc<ab+ac+bc
Ta có:
a<b+ca<b+c
--> a+a<a+b+ca+a<a+b+c
--> 2a<22a<2
--> a<1a<1
Tương tự ta có : b<1,c<1b<1,c<1
Suy ra: (1−a)(1−b)(1−c)>0(1−a)(1−b)(1−c)>0
⇔ (1–b–a+ab)(1–c)>0(1–b–a+ab)(1–c)>0
⇔ 1–c–b+bc–a+ac+ab–abc>01–c–b+bc–a+ac+ab–abc>0
⇔ 1–(a+b+c)+ab+bc+ca>abc1–(a+b+c)+ab+bc+ca>abc
Nên abc<−1+ab+bc+caabc<−1+ab+bc+ca
⇔ 2abc<−2+2ab+2bc+2ca2abc<−2+2ab+2bc+2ca
⇔ a2+b2+c2+2abc<a2+b2+c2–2+2ab+2bc+2caa2+b2+c2+2abc<a2+b2+c2–2+2ab+2bc+2ca
⇔ a2+b2+c2+2abc<(a+b+c)2−2a2+b2+c2+2abc<(a+b+c)2−2
⇔ a2+b2+c2+2abc<22−2a2+b2+c2+2abc<22−2 , (do a+b=c=2a+b=c=2 )
⇔ dpcm
cho tam giác ABC có chu vi là 24cm biết 3 cạnh AB,AC,BC lần lượt tỉ lệ với 1,2,1 a) Tính độ dài 3 cạnh của tam giác ABC b) Gọi M là trung điểm của AC. Chứng minh BM là tia phân giác của góc ABC c)chứng minh BM vuông góc với AC
Tam giác ABC có độ dài các cạnh là AB = 3 cm, AC = 5 cm, BC = 7 cm, tam giác A' B' C' đồng dạng với tam giác ABC và có chu vi bằng 55 cm. Hãy tính độ dài các cạnh của tam giác A' B' C’ (làm tròn đến chữ số thập phân thứ hai)
Chu vi tam giác ABC là 3 + 5 +7 = 15
Ta có :
P ABC / P A'B'C' = AB / A'B'
<=> 15 / 55 = 3 / A'B'
=> A'B' = ( 55 x 3 )/ 15 = 11 cm
P ABC / P A'B'C' = AC / A'C'
<=> 15 / 55 = 5 / A'C'
=> A'C' = ( 55 x 5 ) / 15 = 55/3 cm
P ABC / P A'B'C' = BC / B'C'
<=> 15 / 55 = 7 / B'C'
=> B'C' = ( 55 x 7 ) / 15 = 77/3 cm
\(\Rightarrow\Delta ABC\)đồng dạng \(\Delta A'B'C'\left(gt\right)\)
Áp dụng tính chất DTSBN , ta có :
\(\frac{AB}{A'B'}=\frac{AC}{A'C'}=\frac{BC}{B'C'}=\frac{AB+AC+BC}{A'B'+A'C'+B'C'}=\frac{C_{ABC}}{C_{A'B'C'}}\)
Hay \(\frac{3}{A'B'}=\frac{7}{B'C'}=\frac{5}{A'C'}=\frac{C_{ABC}}{55}=\frac{3+5+7}{55}=\frac{15}{55}=\frac{3}{11}\)
Với CABC và CA'B'C' lần lượt là chu vi của tam giác ABC , A'B'C'
\(+)\frac{3}{A'B'}=\frac{3}{11}\Rightarrow A'B'=\frac{3.11}{3}=11cm\)
\(+)\frac{7}{A'C'}=\frac{3}{11}\Rightarrow B'C'=\frac{7.11}{3}\approx25,67cm\)
\(+)\frac{5}{A'C'}=\frac{3}{11}\Rightarrow A'C'=\frac{5.11}{3}\approx18,33cm\)
Cho tam giác ABC vuông ở A và có chu vi là 120 cm .Biết đọ dài cạnh AC bằng 75% độ dài cạnh AB . Độ dài cạnh BC bằng 5/7 tổng độ dài của hai cạnh AC và AB . Hãy tính chiều cao AH ứng với cạnh BC của hình tam giác ABC.
cho tam giác ABC vuông ở A và có chu vi là 120cm biết độ dài cạnh AC bằng 75% độ dài cạnh AB. độ dài cạnh BC bằng 5/7 tổng độ dài của hai cạnh AC và AB.
Hãy tính chiều cao AH ứng với cạnh BC của hình tam giác ABC.
. Cho tam giác ABC vuông tại A, có AB = 6cm, AC = 8cm.
a.Tính độ dài cạnh BC và chu vi tam giác ABC.
b.Tia phân giác của góc B cắt AC tại Dh⊥BC(H∈BC). Vẽ Chứng minh: △ABD = △HBD
c. △ABH là tam giác gì? Vì sao?
a: BC=căn 6^2+8^2=10cm
C ABC=6+8+10=24cm
b: Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
góc ABD=góc HBD
=>ΔBAD=ΔBHD
c: ΔBAD=ΔBHD
=>BA=BH
=>ΔBAH cân tại B
Cho tam giác ABC vuông ở A và có chu vi là 120cm .Biết độ dài cạnh AC bằng 75% độ dài cạnh AB . Độ dài cạnh BC bằng 5/7 tổng độ dài hai cạnh AC và AB . Hãy tính chiều cao AH ứng với cạnh BC của hình tam giác ABC . Cách giải thế nào ?
Tổng số % khi AB+AC là
100%+75%=175%
Độ dài cạnh BC so với AB bằng số % là
175%:7x5=125%
Tổng độ dài 3 cạnh so với cạnh AB là
100%+75%+125%=300%
Độ dài cạnh AB là
120:300x100=40(cm)
Độ dài cạnh AC là
120:300x75=30(cm)
Độ dài cạnh BC là
120:-300x125=50(cm)
Vì chiều cao AH ứng với cạnh BC
Nên AH=BC
Mà BC=50cm
=>AH=50cm
Cho tam giác ABC có chu vi là 182 m , cạnh AB bằng cạnh AC, cạnh AC bằng 4/5 cạnh BC. Đường cao BH có độ dài bằng 28 m.
a) Tính độ dài các cạnh của tam giác ABC .
b) Trên cạnh AC kéo dài về phía C lấy điểm D, trên cạnh AB lấy điểm E sao cho CD=BE=12cm. Tính độ dài đường cao hạ từ đỉnh D xuống cạnh BC .
cho tam giác ABC vuông ở A va có chu vi là 120cm. Biết độ dài cạch AC bằng 75% độ dài cạch AB.Độ dài cạnh BC bằng 5/7 tổng độ dài 2 cạnh AC và AB
Hãy tính chiếu cao AH ứng với cạnh BC của hình Tam giác ABC