Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Xem chi tiết
Hasune Miku
8 tháng 3 2017 lúc 21:06

anh ơi ,toán này hồi em học lớp 4 còn biết thế mà anh ko biết, gợi ý nha:toán này thuộc dạng sai phân

Duong Minh Hieu
8 tháng 3 2017 lúc 21:08

\(\frac{3}{2}A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\)

\(\frac{3}{2}A=1-\frac{1}{100}\)

\(\frac{3}{2}A=\frac{99}{100}\)

\(A=\frac{33}{50}\)

k minh nha

Nguyễn Thanh Tùng
8 tháng 3 2017 lúc 21:19

bài này dễ thế mà không giải được hả bạn

Nguyễn Xuân Dũng
Xem chi tiết
soyeon_Tiểu bàng giải
11 tháng 9 2016 lúc 11:09

\(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{97.100}\)

\(A=\frac{2}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{97.100}\right)\)

\(A=\frac{2}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)\)

\(A=\frac{2}{3}.\left(1-\frac{1}{100}\right)\)

\(A=\frac{2}{3}.\frac{99}{100}=\frac{33}{50}\)

Nguyễn Phương Anh
11 tháng 9 2016 lúc 11:12

A = \(\frac{2}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)\)

A = \(\frac{2}{3}.\left(1-\frac{1}{100}\right)\)= \(\frac{2}{3}.\frac{99}{100}\)= \(\frac{33}{50}\)
 

Trieu Minh Anh
11 tháng 9 2016 lúc 11:17

A = \(\frac{2}{1\cdot4}+\frac{2}{4\cdot7}+\frac{2}{7\cdot10}+....+\frac{2}{97\cdot100}\)

A = \(\frac{2}{3}\left(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+....+\frac{3}{97\cdot100}\right)\)

A = \(\frac{2}{3}\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+....\frac{1}{97}-\frac{1}{100}\right)\)

A = \(\frac{2}{3}\left(\frac{1}{1}-\frac{1}{100}\right)\)

A = \(\frac{2}{3}\cdot\frac{99}{100}\)

A = \(\frac{33}{50}\)

_Nhạt_
Xem chi tiết
Trường
10 tháng 4 2019 lúc 20:16

\(A=2.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)\) 

\(=2.\left(\frac{1}{1}-\frac{1}{100}\right)\) 

\(=2.\frac{99}{100}\) 

\(=\frac{99}{50}\)

Nguyễn Phạm Hồng Anh
10 tháng 4 2019 lúc 20:16

\(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{97.100}\)

=>  \(A=\frac{2}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\right)\)

=>  \(A=\frac{2}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)

=>  \(A=\frac{2}{3}\left(1-\frac{1}{100}\right)\)

=> \(A=\frac{2}{3}.\frac{99}{100}=\frac{33}{50}\)

Study well ! >_<

Vương Hải Nam
10 tháng 4 2019 lúc 20:17

\(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{97.100}\)

\(A=\frac{2}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\right)\)

\(A=\frac{2}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)

\(A=\frac{2}{3}.\left(1-\frac{1}{100}\right)\)

\(A=\frac{2}{3}.\frac{99}{100}\)

\(A=\frac{33}{50}\)

pham tu anh
Xem chi tiết
pham tu anh
6 tháng 2 2015 lúc 20:44

có phải là 99/100 đúng không

 

pham tu anh
6 tháng 2 2015 lúc 21:00

mình cần gấp lắm có ai giúp giupf mình với!

 

Nguyễn Lương Bảo Tiên
6 tháng 2 2015 lúc 21:39

Mình ko chắc lắm, nếu sai thì xin lỗi nhiều

\(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{97.100}\)

\(A=2.\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{97.100}\right)\)

\(A=2.\left(\frac{1.3}{1.4.3}+\frac{1.3}{4.7.3}+\frac{1.3}{7.10.3}+...+\frac{1.3}{97.100.3}\right)\)

\(A=2.\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\right)\)

\(A=2.\frac{1}{3}.\left(\frac{4-1}{1.4}+\frac{7-4}{4.7}+\frac{10-7}{7.10}+...+\frac{100-97}{97.100}\right)\)

\(A=\frac{2}{3}.\left(\frac{4}{1.4}-\frac{1}{1.4}+\frac{7}{4.7}-\frac{4}{4.7}+\frac{10}{7.10}-...-\frac{97}{97.100}\right)\)

\(A=\frac{2}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-...-\frac{1}{100}\right)\)

\(A=\frac{2}{3}.\left(1-\frac{1}{100}\right)\)

\(A=\frac{2}{3}.\frac{99}{100}\)

\(A=\frac{33}{50}\)

Nguyễn Quỳnh Trang
Xem chi tiết
Minh Bùi Nhật
Xem chi tiết
Văn Phát Lê
25 tháng 4 2016 lúc 5:09

Giải: 

C = \(\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{37.40}\)

C = \(2\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{37.40}\right)\)

C = \(2\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{37}-\frac{1}{40}\right)\)

C = \(2\left(\frac{1}{1}-\frac{1}{40}\right)\)

C = \(2.\frac{39}{40}\)

C = \(\frac{39}{20}\)

Ham Eunjung
25 tháng 4 2016 lúc 0:19

C=2(\(\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{37.40}\))

   =2.1/3(\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{37}-\frac{1}{40}\))

phần còn lại tự lm nha

Phát Lê
Xem chi tiết
Hà Hoài Thư
9 tháng 4 2016 lúc 10:27

A=2/3(1-1/4+1/4-1/7+1/7-1/10+...+1/97-1/100)

A=2/3(1-1/100)

A=2/3.99/100

A=33/50

mình k pit co dung k nua nghe

kagamine rin len
9 tháng 4 2016 lúc 10:44

A=2/1.4+2/4.7+2/7.10+...+2/97.100

=2/3(3/1.4+3/4.7+3/7.10+...+3/97.100)

=2/3(1-1/4+1/4-1/7+1/7-1/10+...+1/97-1/100)

=2/3(1-1/100)=33/50

Edogawa Conan
Xem chi tiết
✓ ℍɠŞ_ŦƦùM $₦G ✓
24 tháng 8 2015 lúc 10:55

\(B=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{97.100}=\frac{2}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\right)\)

\(=\frac{2}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)=\frac{2}{3}\left(1-\frac{1}{100}\right)\)

\(=\frac{2}{3}.\frac{99}{100}=\frac{33}{50}\)

Nguyễn Ngọc Quý
24 tháng 8 2015 lúc 10:58

\(B=\frac{2}{1.4}+\frac{2}{4.7}+...+\frac{2}{97.100}=\frac{1}{3}\left(\frac{2}{1}-\frac{2}{4}+\frac{2}{4}-...-\frac{2}{100}\right)\)

\(B=\frac{1}{3}.\left(2-\frac{2}{100}\right)=\frac{1}{3}.\frac{99}{50}==\frac{33}{50}\)

Phạm Thành Đạt
1 tháng 5 2016 lúc 14:13

Bạn ơi tớ hỏi Nguyễn Thiều Công Thành:

Vì sao lại = 2/3 . ( 3/1.4 + 3/4.7+ 3/7/10 + ... + 3/97.100 )  

Hồ Thị Phương Thanh
Xem chi tiết
Thắng Nguyễn
2 tháng 5 2016 lúc 11:07

\(\frac{3}{2}A=\frac{3}{2}\left(\frac{2}{1.4}+\frac{2}{4.7}+...+\frac{2}{97.100}\right)\)

\(\frac{3}{2}A=\frac{3}{2}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)\)

\(\frac{3}{2}A=\frac{3}{2}\left(1-\frac{1}{100}\right)\)

\(\frac{3}{2}A=\frac{3}{2}\times\frac{99}{100}\)

\(A=\frac{99}{100}\)

Jessica Trần
2 tháng 5 2016 lúc 10:57

33/50