Tính \(A=x^2+\left(\sqrt{x^4+x+1}\right)\)với \(x=\frac{1}{2}\left(\sqrt{\sqrt{2}+\frac{1}{8}}\right)-\frac{1}{8}\sqrt{2}\)
Ai giải nhanh mình tick cho cảm ơn nha
giúp mk vs nhanh nha
cho biểu thức \(P=\left(\frac{\sqrt{x-1}}{3+\sqrt{x-1}}+\frac{x+8}{10-x}\right):\left(\frac{3\sqrt{x-1}+1}{x-3\sqrt{x-1}-1}-\frac{1}{\sqrt{x-1}}\right)\)
rút gọn P
tính giá trị của P khi \(x=\sqrt[4]{\frac{3+2\sqrt{2}}{3-2\sqrt{2}}}-\sqrt[4]{\frac{3-2\sqrt{2}}{3+2\sqrt{2}}}\)
Rút gọn: A = \(\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right).\left(\frac{x-\sqrt{x}}{\sqrt{x}+1}-\frac{x+\sqrt{x}}{\sqrt{x}-1}\right)\)
Làm ơn giúp mình với T^T Bạn nào làm được mình sẽ tick ngay nha ^^
\(=\frac{x-1}{2\sqrt{x}}.\frac{\sqrt{x}\left(\sqrt{x}-1\right)^2-\sqrt{x}\left(\sqrt{x}+1\right)^2}{x-1}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-1-\sqrt{x}-1\right)\left(\sqrt{x}-1+\sqrt{x}+1\right)}{2\sqrt{x}}\)
\(=\frac{-2.2\sqrt{x}}{2}\)
\(=-2\sqrt{x}\)
Thank bạn bài vừa rồi đã k cho mk^^
Rút gọn: A = \(\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right).\left(\frac{x-\sqrt{x}}{\sqrt{x}+1}-\frac{x+\sqrt{x}}{\sqrt{x}-1}\right)\)
Làm ơn giúp mình với T^T Bạn nào làm được mình sẽ tick ngay nha ^^
các bạn giải chi tiết giúp mk nhé. Cảm ơn
1. a> Rút gọn biểu thức sau : A= \(5\left(\frac{1}{\sqrt{2-\sqrt{3}}}+\sqrt{3-\sqrt{5}}-\frac{\sqrt{10}}{2}\right)^2\)+ \(\left(\frac{1}{\sqrt{2+\sqrt{3}}}+\sqrt{3-\sqrt{5}}-\frac{\sqrt{6}}{2}\right)^2\)
b) Cho biểu thức B= \(\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x+1}}-\frac{8\sqrt{x}}{x-1}\right):\left(\frac{\sqrt{x}-x-3}{x-1}-\frac{1}{\sqrt{x}-1}\right)\)
Rút gọn biểu thức B và chứng minh B nhỏ hơn hoặc bằng 1 với mọi x lớn hơn hoặc bằng 0 và x khác 1
Giúp mình giải bài toán phía dưới với nha mọi người
MÌNH CẢM ƠN RẤT NHIỀU!
Cho biểu thức
A=\(\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)\left(\frac{x\sqrt{x}}{\sqrt{x}-1}-\frac{x+\sqrt{x}}{\sqrt{x}1}\right)\)
a)Rút gọn A
b) Tìm giá trị của x để A >-6
#)Giải :
a) \(A=\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)\left(\frac{x\sqrt{x}}{\sqrt{x}-1}-\frac{x+\sqrt{x}}{\sqrt{x}-1}\right)\)
\(=\frac{x-1}{2\sqrt{x}}\left(\frac{\sqrt{x}\left(\sqrt{x}-1\right)^2-\sqrt{x}\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\frac{x-1}{2\sqrt{x}}.\frac{x\sqrt{x}-2x+\sqrt{x}-x\sqrt{x}-2x-\sqrt{x}}{x-1}\)
\(=\frac{-4}{2\sqrt{x}}=-2\sqrt{x}\)
#)Giải :
b) Để \(A>-6\Leftrightarrow-2\sqrt{x}>-6\)
\(\Leftrightarrow\sqrt{x}< 3\)
\(\Leftrightarrow x< 9\)
Kết hợp với đkxđ => 0 < x < 9
\(B=\left(\frac{x+3}{x-9}+\frac{1}{\sqrt{x+3}}\right)\div\frac{\sqrt{x}}{\sqrt{x-3}}\)
\(x>0,x\ne9\)
a) rút gọn B
b) tính B khi \(x=\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\)
c) chứng minh khi B>\(\frac{1}{2}\)
ai nhanh mình tick nhé cảm ơn các bạn
Có bị sai đề không vậy bạn ? Mình nghĩ nó là \(\sqrt{x}+3\) với \(\sqrt{x}-3\)chứ không phải là \(\sqrt{x+3}\) với \(\sqrt{x-3}\)?
giải phương trình:
\(\sqrt{\frac{x+56}{16}+\sqrt{x-8}}=\frac{x}{8}\)
\(4\left(x+1\right)^2=\sqrt{2\left(x^4+x^2+1\right)}\)
Mọi người giúp mình với ạ
Minhg đang cần gấp ạ
Mong mn giúp đỡ, cảm ơn
\(4\left(x+1\right)^2=\sqrt{2\left(x^4+x^2+1\right)}\)
\(\Leftrightarrow16\left(x+1\right)^4=2\left(x^4+x^2+1\right)\)
\(\Leftrightarrow\left(x^2+3x+1\right)\left(7x^2+11x+7\right)=0\)
\(\sqrt{\frac{x+56}{16}+\sqrt{x-8}}=\frac{x}{8}\)
\(\Leftrightarrow2\sqrt{x+56+16\sqrt{x-8}}=x\)
\(\Leftrightarrow2\sqrt{\left(\sqrt{x-8}+8\right)^2}=x\)
\(\Leftrightarrow2\sqrt{x-8}+16=x\)
\(\Leftrightarrow x=24\)
Tìm x để A < 2 với :
A = \(\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{x-3}{x+2\sqrt{x}+4}-\frac{7\sqrt{x}+10}{x\sqrt{x}-8}\right):\left(\frac{\sqrt{x}+7}{x+2\sqrt{x}+4}\right)\)
Mấy bạn giúp mk nha......cảm ơn m bạn ^^
\(A=\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{x-3}{x+2\sqrt{x}+4}-\frac{7\sqrt{x}+10}{x\sqrt{x}-8}\right):\left(\frac{\sqrt{x}+7}{x+2\sqrt{x}+4}\right)\)
\(=\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{x-3}{x+2\sqrt{x}+4}-\frac{7\sqrt{x}+10}{\sqrt{x}^3-8}\right):\left(\frac{\sqrt{x}+7}{x+2\sqrt{x}+4}\right)\)
\(=\left(\frac{\sqrt{x}\left(x+2\sqrt{x}+4\right)}{\sqrt{x}^3-8}-\frac{\left(x-3\right)\left(\sqrt{x}-2\right)}{\sqrt{x}^3-8}-\frac{7\sqrt{x}+10}{\sqrt{x}^3-8}\right)\)\(:\left(\frac{\sqrt{x}+7}{x+2\sqrt{x}+4}\right)\)
\(=\frac{\sqrt{x}^3+2x+4\sqrt{x}-\sqrt{x}^3+2x+3\sqrt{x}-6-7\sqrt{x}-10}{\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+4\right)}.\frac{\left(x+2\sqrt{x}+4\right)}{\sqrt{x}+7}\)
\(=\)\(\frac{\left(4x-16\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+7\right)}=\frac{4\left(x-4\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+7\right)}\)
Sai đề không ?
A= \(\left(\frac{\sqrt{x}\left(x+2\sqrt{x}+4\right)-\left(x-3\right)\left(\sqrt{x}-2\right)-7\sqrt{x}+10}{\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+4\right)}\right)\) . \(\frac{x+2\sqrt{x}+4}{\sqrt{x}+7}\)
= \(\frac{x\sqrt{x}+2x+4\sqrt{x}-x\sqrt{x}+3\sqrt{x}-6+2x-7\sqrt{x}-10}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+7\right)}\)
= \(\frac{4x-16}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+7\right)}\)
=\(\frac{4\left(x-4\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+7\right)}\)
= \(\frac{4\left(\sqrt{x}+2\right)}{\sqrt{x}+7}\)
= \(\frac{4\sqrt{x}+8}{\sqrt{x}+7}\)
#mã mã#
Cám ơn bạn mã mã , để mình làm nốt nhé :
\(A=\frac{4\sqrt{x}+8}{\sqrt{x}+7}\)
Để \(A>2\Rightarrow\frac{4\sqrt{x}+8}{\sqrt{x}+7}>2\)
\(\Rightarrow\frac{4\sqrt{x}+8}{\sqrt{x}+7}-2>0\)
\(\Rightarrow\frac{4\sqrt{x}+8-2\sqrt{x}-14}{\sqrt{x}+7}>0\)
\(\Rightarrow\frac{2\sqrt{x}-6}{\sqrt{x}+7}>0\)
Vì \(\sqrt{x}>0\Rightarrow\sqrt{x}+7>0\)\(\Rightarrow A>0\Leftrightarrow2\sqrt{x}-6>0\)
\(\Rightarrow2\left(\sqrt{x}-3\right)>0\Rightarrow\sqrt{x}-3>0\)
\(\Leftrightarrow\sqrt{x}>3\Rightarrow\sqrt{x}>\sqrt{9}\Rightarrow x>9\)
Vậy để \(A>2\Leftrightarrow x>9\)
Bài 1 1) Tính a)\(\frac{\sqrt{5}}{4}-\frac{1}{\sqrt{5}-1}\) b)\(\left(8\sqrt{27}-6\sqrt{48}\right):\sqrt{3}\) 2) Cho\(A=\left(1-\frac{4}{\sqrt{x}+1}+\frac{1}{x-1}\right):\frac{x-2\sqrt{x}}{x-1}\left(x>0,x\ne1,x\ne4\right)\)Rút gọn b)Tìm x để A =\(\frac{1}{2}\) Bài 2 Cho biểu thức \(A=\left(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2}{x-\sqrt{x}}\right):\frac{1}{\sqrt{x}-1}\) a) Tìm điều kiện xác định ,Rút gọn A b) tình giá trị của A khi \(x=3-2\sqrt{2}\) (Mình xin cảm ơn)