Chứng tỏ rằng : 1+5+5^2+...+5^402+5^403+5^404 chia hết 31
chứng tỏ rằng A = 1+5+5^2+5^3+...+5^402+5^403+5^404 chia hết cho 31
Chứng tỏ rằng 1+5+52+...+5402+5403+5404 chia hết cho 31
Ta có:\(1+5+5^2+\cdot\cdot\cdot+5^{404}\)
= \(\left(1+5+5^2\right)+\cdot\cdot\cdot+\left(5^{402}+5^{403}+5^{404}\right)\)
= \(\left(1+5+25\right)+\cdot\cdot\cdot+\left(5^{402}\cdot1+5^{402}\cdot5+5^{402}\cdot25\right)\)
= \(31+\cdot\cdot\cdot+\left(1+5+25\right)\cdot5^{402}\)
= \(31\cdot1+...+31\cdot5^{402}\)
= \(31\cdot\left(1+...+5^{402}\right)⋮31\)
Vậy tổng trên chia hết cho 31
Chứng tỏ rằng: (1+5+5^2+5^3+...+5^403+5^404) chia hết cho 31
\(\text{Đặt A=}1+5+5^2+5^3+...+5^{403}+5^{404}\)
\(=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{402}+5^{403}+5^{404}\right)\)
\(=\left(1+5+25\right)+5^3.\left(1+5+5^2\right)+...+5^{402}.\left(1+5+5^2\right)\)
\(=31+5^3.31+...+5^{402}.31\)
\(=31.\left(1+5^3+...+5^{402}\right)\text{chia hết cho 31}\)
=> A chia hết cho 31 => đpcm.
A = 1 + 5 + 5² + 5³ + ...+ 5^404 = (5^405 - 1)/4
thấy 5³ = 125 chia 31 dư 1 => (5³)^135 = 5^405 chia 31 dư 1
=> 4A = 5^405 - 1 chia hết cho 31 mà 4 và 31 nguyên tố cùng nhau
=> A chia hết cho 31
Chứng tỏ rằng: (1+5+5^2+5^3+...+5^403+5^404) chia hết cho 31
Ghép các số lại
1+5+5^2=31
5^3+5^4+5^5=5^3.(1+5+5^2)=5^3.31
Dễ r đung ko?
chứng tỏ rằng
1+5+52+.....+5402+5403+5404 chia hết cho 31
\(1+5+5^2+...+5^{404}\)
\(=5^3\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{404}\left(1+5+5^2\right)\)
\(=\left(1+5+5^2\right)\left(5^3+5^4+...+5^{403}+5^{404}\right)\)
\(=31.\left(5^3+5^4+...+5^{403}+5^{404}\right)\)
Vậy tổng trên chia hết cho 31
1 + 5 + 52 + .... + 5404
= ( 1 + 5 ) + ( 52 + 53 ) + ... + ( 5403 + 5404 )
= 6 + 52 . ( 1 + 5 ) + ... + 5403 . ( 1 + 5 )
=6 + 52 . 6 + ... + 5403 . 6
= 6 . ( 1 + 52 + ... + 5403 )
= 3 . 2 . ( 1 + 52 + .... + 5403 ) chia hét cho 3
Ta có: 1 + 5 + 52 + .... + 5404
= ( 1 + 5 ) + ( 52 + 53 ) + ... + ( 5403 + 5404 )
= 6 + 52 . ( 1 + 5 ) + ... + 5403 . ( 1 + 5 )
=6 + 52 . 6 + ... + 5403 . 6
= 6 . ( 1 + 52 + ... + 5403 ) chia hết cho 3
Chứng tỏ B = 1 + 5 + 52 +.........+ 5402 + 5403 + 5404 chia hết cho 31
=> B=(1+5+52)+(53+54+55)+...........+(5402+5403+5404)
=> B= 1.(1+5+52)+53.(1+5+52)+.........+5402.(1+5+52)
=> B=1.31+53.31+...........+5402.31
=> B=31.(1+53+........+5402)
Vì 31 chia hết cho 31 => 31.(1+53+............+5402) chia hết cho 31
=> B chia hết cho 31 ĐPCM
B= (1+5+52)+(53+54+55)+...+(5402+5403+5404)
=(1+5 +52)+ 53(1+5+52)+...+5402(1+5 +52)
=(1+5 +52) + (1 + 53+...+5402) =31(1 + 53+...+5402)
Có 31 chia hết cho 31 =>31(1 + 53+...+5402) chia hết cho 31 => B chia hết cho 31
Chứng tỏ rằng:
B=1+5+52+...+5403+5404 chia hết cho 31
Chứng tỏ rằng
( 1+5+52+......+5402 +5403+5404) chia hết cho 3 (tại ko có dấu)
Tổng \(S=1+5+5^2+5^3+...+5^{403}+5^{404}\) có 405 số hạng
405 không chia hết cho 2 nên cộng S theo cách nhóm sau:
\(S=\left(1+5\right)+\left(5^2+5^3\right)+...+\left(5^{402}+5^{403}\right)+5^{404}\)
Sẽ thừa ra số hạng cuối 5404 .
\(S=\left(1+5\right)+5^2\left(1+5\right)+5^4\left(1+5\right)+...+5^{402}\left(1+5\right)+5^{404}\)
Các số trong () =6 chia hết cho 3 và 5404 không chia hết cho 3 nên S không chia hết cho 3.
Lớp 5 đâu học cái này bạn Erza Scarlet
Chứng minh rằng
1+5+5²+.....+5^403+5^404 chia hết cho 31
Đặt A=1+5+52+...+5403+5404
=(1+5+52)+...+(5402+5403+5404)
=1.(1+5+52)+...+5402.(1+5+52)
=1.31+...+5402.31
=31.(1+...+5402) chia hết cho 31 (đpcm)