chứng minh rằng với mọi n là số tự nhiên thì A=n.(2n+7).(7n+7) chia hết cho 6
chứng minh rằng với mọi n là số tự nhiên thì A= n.(2n+7).(7n+7) chia hết cho 6
Do:
\(A=n\left(2n+7\right)\left(7n+7\right)=14n^3+63n^2+49n=14n\left(n+1\right)\left(n+2\right)+3.7n\left(n+1\right)\)
nên A chia hết cho 6
Chứng minh rằng với mọi số tự nhiên n thì :
n.(2n+7).(7n+1) chia hết cho 6
Chứng minh rằng với mọi n€N thì A(n)=n(2n+7)(7n+7) chia hết cho 6
Bài 1.Tìm số tự nhiên n sao cho: 2n + 7 chia hết cho n + 2
Bài 2.Chứng minh rằng:
a/ Với mọi số tự nhiên n thì (n+3)(n+10) chia hết cho 2
b/ Với mọi số tự nhien n thì (n+3)(n+6) chia hết cho 2
c/ Với mọi số tự nhiên n thì (5n+7)(4n+6) chia hết cho 2
Chứng minh rằng với mọi số tự nhiên n thì A = n2 + 7n + 7 không thể chia hết cho 49
G/s: A = \(n^2+7n+7⋮49\)
=> \(n^2⋮49\)
=> \(n⋮7\)
Đặt : n = 7 k
Khi đó: \(A=49k^2+49k+7⋮49\)
=> \(7⋮49\) vô lí
=> Điều g/s là sai
Vậy A không thể chia hết cho 49.
chứng minh rằng với mọi n thì số A= n(2n+7) (7n+1) chia hết cho 6
Vì (7n + 1) - n = 6n + 1 là số lẻ nên trong hai số 7n + 1 và n có đúng một số chẵn \(\Rightarrow\) A = n(2n + 7)(7n + 1) \(⋮\) 2 (1)
Xét 3 TH:
+) n = 3k (k \(\in\) N): Khi đó n \(⋮\) 3 \(\Rightarrow\) A = n(2n + 7)(7n + 1) \(⋮\) 3
+) n = 3k + 1 (k \(\in\) N): Khi đó 2n + 7 = 2(3k + 1) + 7 = 6k + 9 \(⋮\) 3 \(\Rightarrow\) A = n(2n + 7)(7n + 1) \(⋮\) 3
+) n = 3k + 2 (k \(\in\) N): Khi đó 7n + 1 = 7(3k + 2) + 1 = 21k + 15 \(⋮\) 3 \(\Rightarrow\) A = n(2n + 7)(7n + 1) \(⋮\) 3
Từ đó suy ra A = n(2n + 7)(7n + 1) \(⋮\) 3 (2)
Từ (1) và (2) suy ra A \(⋮\) 6 (đpcm)
(f) Chứng minh rằng với mọi số tự nhiên n > 1 thì: 5^n+2 + 26.5^n + 82n+1 chia hết cho 59.
(g) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 4^2n+1 + 3^n+2chia hết cho 13.
(h) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 5^2n+1 + 2^n+4+ 2^n+1 chia hết cho 23.
(i) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 11n+2 + 122n+1 chia hết cho 133.
(j) Chứng minh rằng với mọi số tự nhiên n > 1: 5^2n−1 .26n+1 + 3^n+1 .2^2n−1 chia hết cho 38
1+2+3+4+5+6+7+8+9=133456 hi hi
đào xuân anh sao mày gi sai hả
???????????????????
Chứng minh:
a) ( 3 n - 1 ) 2 - 4 chia hết cho 3 với mọi số tự nhiên n;
b) 100 - ( 7 n + 3 ) 2 chia hết cho 7 với n là số tự nhiên.
a) Ta có: ( 3 n - 1 ) 2 - 4 = (3n - 1 - 2)(3n - 1 + 2) = 3(n - l)(3n + 1).
Do 3(n - 1)(3n + l) chia hết cho 3 với mọi số tự nhiên n, nên ( 3 n - 1 ) 2 - 4 chia hết cho 3 với mọi số tự nhiên n;
b) Ta có: 100 - ( 7 n + 3 ) 2 =(7 - 7n)(13 – 7n) = 7(1 - n)(13 -7n) chia hết cho 7 với n là số tự nhiên.
1,Chứng minh n^6+n^4-2n^2 chia hết cho 72?
2,CMR: 3^(2n) - 9 chia hết cho 72?
3,chứng minh rằng với mọi số tự nhiên n thì 7n và 7n+4 có hai chữ số tận cùng như nhau
4, Chứng minh rằng mọi số nguyên tố p>3 thì p2-1 chia hết cho 24
Đặt A = n^6 + n^4 – 2n^2 = n^2 (n^4 + n^2 – 2)
= n^2 (n^4 – 1 + n^2 – 1)
= n^2 [(n^2 – 1)(n^2 + 1) + n^2 – 1]
= n^2 (n^2 – 1)(n^2 + 2)
= n.n.(n – 1)(n + 1)(n^2 + 2)
+ Nếu n chẳn ta có n = 2k (k thuộc N)
A = 4k^2 (2k – 1)(2k + 1)(4k^2 + 2) = 8k^2 (2k – 1)(2k + 1)(2k^2 + 1)
Suy ra A chia hết cho 8
+ Nếu n lẻ ta có n = 2k + 1 (k thuộc N)
A = (2k + 1)^2 . 2k (2k + 2)(4k^2 + 4k + 1 + 2)
= 4k(k + 1)(2k + 1)^2 (4k^2 + 4k + 3)
k(k + 1) chia hết cho 2 vì là tích hai số liên tiếp
Suy ra A chia hết cho 8
Do đó A chia hết cho 8 với mọi n thuộc N
* Nếu n chia hết cho 3 thì A chia hết cho 9. Nên A chia hết cho 72.
* Nếu n không chia hết cho 3 thì n^2 là số chính phương nên chia 3 dư 1 (vì số chính phương chia 3 chỉ dư 0 hoặc 1).
Suy ra n^2 + 2 chia hết cho 3. Mà n (n – 1)(n + 1) là tích 3 số liên tiếp nên có số chia hết cho 3. Suy ra A chia hết cho 9. Do đó A chia hết cho 72.
Vậy A chia hết cho 72 với mọi n thuộc N.