Tìm số tự nhiên có bốn chữ số, biết rằng chữ số hàng trăm bằng 0 và nếu xoá chữ số 0 đó thì số ấy giảm 9 lần.
Tìm số tự nhiên có bốn chữ số , biết rằng chữ số hàng trăm bằng 0 và nếu xóa chữ số 0 đó thì số ấy giảm 9 lần.
Gọi số cần tìm là : a0cd . Khi đó số mới là : acd
Ta có : a0cd = acd x 9
<=> 1000a + 10c + d = 900a + 90c + 9d
=> 1000a - 900a + 10c - 90c + d - 9d = 0
<=> 100a - 80c - 8d = 0
=> 4(25a - 20c - 2d) = 0
=> 25a - 20c - 2d = 0
Mk chỉ giả đc đến đây thôi
abc là số phải tìm
___
abc = 100a + 10b + c
Khi xóa số hàng trăm ta được số
__
bc = 10b + c
Theo giả thiết thì
100a + 10b + c = 5(10b + c)
100a + 10b + c chia hết cho 5 nên chữ số tận cùng phải bằng 0 hoặc 5
Ta xét 2 trường hợp:
(1) Nếu c = 0 thì 100a + 10b = 50b hay 100a = 40b
Suy ra b/a = 100/40 = 5/2
Vậy a = 2, b = 5, c = 0
Số phải tìm là 250
(2) Nếu c = 5 thì 100a + 10b + 5 = 50b + 25 hay 100a - 20 = 40b
Suy ra (5a - 1) = 2b
Vậy 5a - 1 phải là số chẵn, 5a là một số lẻ, và a là một số lẻ
Vì b ≤ 9 nên 5a - 1 ≤ 18. a ≤ 19/5, a < 4
a là một số lẻ nhỏ hơn 4. a có thể là 1 hay 3
(a) nếu a = 1 thì b = (5a - 1)/2 = 2, số phải tìm là 125
(b) nếu a = 3 thì b = (5a - 1)/2 = 7, số phải tìm là 375
Tóm lại, có 3 số đáp ứng yêu cầu của bài toán, đó là:
250, 125, 375
Bài 16: Tìm số tự nhiên có hai chữ số, biết rằng nếu viết thêm một chữ số 2 vào bên phải và một chữ số 2 vào bên trái của nó thì số ấy tăng gấp 36 lần
Bài 17: Tìm số tự nhiên có bốn chữ số, biết rằng chữ số hàng trăm bằng 0 và nếu xoá chữ số 0 đó thì số ấy giảm 9 lần
Bài 18: Một số tự nhiên tăng gấp 9 lần nếu viết thêm một chữ số 0 vào giữa các chữ số hàng chục và hàng đơn vị của nó . Tìm số ấy
Bài 19: Tìm số tự nhiên có ba chữ số, biết rằng số đó vừa chia hết cho 5 và chia hết cho 9 , hiệu giữa số đó với số viết theo thứ tự ngược lại bằng 297
Mọi người giúp mình với ạ!!!!
16:
Gọi số cần tìm là x
Theo đề, ta có: 2000+10x+2=36x
=>2002=26x
=>x=77
Bài 16: Gọi số tự nhiên cần tìm là ab.
- Theo đề bài, số tự nhiên khi thêm 2 vào bên phải và bên trái tăng gấp 36 lần, có nghĩa là: (200 + 10a + b) = 36*(100a + 10b + 2) => 8a = 35b - 7
- Vì a, b là số tự nhiên có hai chữ số nên ta thử từng giá trị của b, từ 10 đến 99. Khi b = 10, ta không tìm được giá trị nào thỏa mãn.
- Khi b = 11, ta tìm được a = 4.
- Vậy số tự nhiên cần tìm là 41.
Bài 17: Gọi số tự nhiên cần tìm là abcd.
- Theo đề bài, số tự nhiên có bốn chữ số và chữ số hàng trăm bằng 0 có nghĩa là a = 0.
- Khi xoá chữ số 0 ở hàng trăm, số đó giảm 9 lần, có nghĩa là: (1000 + 100b + 10c + d)/10 = 9*(100 + 10b + c + d) => 91b - 89c - 89d = 810
- Vì b, c, d là số tự nhiên có đến 3 chữ số nên ta thử từng giá trị của b từ 1 đến 9 và c, d từ 0 đến 9.
- Khi b = 9, ta tìm được c = 2 và d = 1. Vậy số tự nhiên cần tìm là 9021.
Bài 18: Gọi số tự nhiên cần tìm là ab.
- Theo đề bài, khi thêm một chữ số 0 vào giữa các chữ số hàng chục và hàng đơn vị của số đó, ta thu được số tự nhiên tăng gấp 9 lần.
- Số tự nhiên gốc khi đó là (a0b).
- Ta có: 10*(10a+b) = 9*(a0b) => 91a - 10b = 0 Vì a, b là số tự nhiên có hai chữ số, nên a phải bằng 1 và b = 9.
- Vậy số tự nhiên cần tìm là 109.
Bài 19: Gọi số tự nhiên cần tìm là abc.
- Số đó vừa chia hết cho 5 và chia hết cho 9, có nghĩa là tổng các chữ số của số đó chia hết cho 9.
- Ta có: a + b + c + c + b + a = 2(a + b + c) chia hết cho 9.
- Suy ra: a + b + c chia hết cho 3.
- Số đó hiệu giữa số đó với số viết theo thứ tự ngược lại bằng 297, có nghĩa là:
(100a + 10b + c) - (100c + 10b + a) = 99a - 99c = 297
=> a - c = 3 Do a + b + c chia hết cho 3 và a - c = 3, nên ta thử các cặp số thỏa mãn a + b + c = 45 và a - c = 3. Khi đó ta tìm được a = 17, b = 11, c = 17.
Vậy số tự nhiên cần tìm là 171.
Bài 1: Tìm số tự nhiên có 5 chữ số, biết rằng nếu viết thêm chữ số 7 vào đằng trước số đó thì được một số lớn gấp 4 lần so với số có được bằng cách viết thêm chữ số 7 vào sau số đó.
Bài 2: Tìm số tự nhiên có hai chữ số, biết rằng nếu viết thêm một chữ số 2 vào bên phải và một chữ số 2 vào bên trái của nó thì số ấy tăng gấp 36 lần.
Bài 3: Tìm số tự nhiên có bốn chữ số, biết rằng chữ số hàng trăm bằng 0 và nếu xoá chữ số 0 đó thì số ấy giảm 9 lần.
Bài 4: Một số tự nhiên tăng gấp 9 lần nếu viết thêm một chữ số 0 vào giữa các chữ số hàng chục và hàng đơn vị của nó . Tìm số ấy.
Bài 5: Tìm số tự nhiên có ba chữ số, biết rằng số đó vừa chia hết cho 5 và chia hết cho 9 , hiệu giữa số đó với số viết theo thứ tự ngược lại bằng 297.
tìm số tự nhiên có 5 chữ số.Viết thêm chữ số 2 vào đằng sau thì được số lớn gấp 3 lần số có được. Bằng cách viết thêm chữ số 2 vào đằng trước.
Bài tập 22. Nếu xen vào giữa các chữ số của một số có hai chữ số một số có hai chữ số kém
số đó 1 đơn vị thì sẽ được một số có bốn chữ số lớn gấp 91 lần so với số đầu tiên. Hãy tìm
số đó
Bài tập 23. Tìm số tự nhiên có hai chữ số, biết rằng số mới viết theo thứ tự ngược lại nhân
với số phải tìm thì được 3154; số nhỏ trong hai số thì lớn hơn tổng các chữ số của nó là 27
Bài tập 24. Cho số có hai chữ số . Nếu lấy số đó chia cho hiệu của chữ số hàng chục và hàng
đơn vị của nó thì được thương là 18 và dư 4 . Tìm số đã cho
Bài tập 25. Cho hai số có 4 chữ số và 2 chữ số mà tổng của hai số đó bằng 2750. Nếu cả hai
số được viết theo thứ tự ngược lại thì tổng của hai số này bằng 8888 . Tìm hai số đã cho
Bài tập 26. Tìm số có bốn chữ số khác nhau, biết rằng nếu viết thêm một chữ số 0 vào giữa
hàng nghìn và hàng trăm thì được số mới gấp 9 lần số phải tìm
Bài tập 27. Tìm số tự nhiên có bốn chữ số, sao cho khi nhân số đó với 4 ta được số gồm bốn
chữ số ấy viết theo thứ tự ngược lại
Bài tập 28. Tìm số tự nhiên có bốn chữ số, sao cho khi nhân số đó với 9 ta được số gồm
bốn chữ số ấy viết theo thứ tự ngược lại
Bài tập 29. Tìm số tự nhiên có năm chữ số, sao cho khi nhân số đó với 9 ta được số gồm
năm chữ số ấy viết theo thứ tự ngược lại
Bài tập 30. Tìm số tự nhiên có ba chữ số, biết rằng nếu xoá chữ số hàng trăm thì số ấy giảm
9 lần.
Bài tập 31. Tìm số tự nhiên có bốn chữ số, biết rằng nếu xoá chữ số hàng nghìn thì số ấy
giảm 9 lần.
Bài tập 32. Tìm số tự nhiên có bốn chữ số, biết rằng chữ số hàng trăm bằng 0 và nếu xoá
chữ số 0 đó thì số ấy giảm 9 lần Bài tập 33. Một số tự nhiên có hai chữ số tăng gấp 9 lần nếu viết thêm một chữ số 0 vào
giữa các chữ số hàng chục và hàng đơn vị của nó . Tìm số ấy
Bài tập 34. Tìm số tự nhiên có ba chữ số, biết rằng số đó vừa chia hết cho 5 và chia hết cho
9 , hiệu giữa số đó với số viết theo thứ tự ngược lại bằng 297.
Tìm số tự nhiên có 4 chữ số, biết rằng chữ số hàng trăm bằng 0 và nếu xóa chữ số 0 đó thì số ấy giảm 9 lần.
Gọi số cần tìm là a0cd,
xóa số 0 thì ta được acd
Ta có: acd . 9 = a0cd
=> (100a + cd) . 9 = 1000a + cd
=> 900a + 9.cd = 1000a + cd
=> 8 . cd = 100a
=> 8.cd bé hơn hoặc bằng 900
=> 100.a bé hơn hoặc bằng 900
100.a có thể bằng 100; 200; 300;...; 900
Xét các trường hợp:
+) 100 : 8 = 12 (dư 4) (loại)
+) 200:8 = 25; 2025 : 9 = 225 (chọn)
... (mình không ghi vì hơi dài bạn tự viết nhé)
+) 900 : 8 (dư 4) (loại)
Vậy số đó có thể là các số 2025; 4050; 6075
Mochizou Ooji thiếu nha !
Đ/S : 2025;4050;6075;8100
abc là số phải tìm
___
abc = 100a + 10b + c
Khi xóa số hàng trăm ta được số
__
bc = 10b + c
Theo giả thiết thì
100a + 10b + c = 5(10b + c)
100a + 10b + c chia hết cho 5 nên chữ số tận cùng phải bằng 0 hoặc 5
Ta xét 2 trường hợp:
(1) Nếu c = 0 thì 100a + 10b = 50b hay 100a = 40b
Suy ra b/a = 100/40 = 5/2
Vậy a = 2, b = 5, c = 0
Số phải tìm là 250
(2) Nếu c = 5 thì 100a + 10b + 5 = 50b + 25 hay 100a - 20 = 40b
Suy ra (5a - 1) = 2b
Vậy 5a - 1 phải là số chẵn, 5a là một số lẻ, và a là một số lẻ
Vì b ≤ 9 nên 5a - 1 ≤ 18. a ≤ 19/5, a < 4
a là một số lẻ nhỏ hơn 4. a có thể là 1 hay 3
(a) nếu a = 1 thì b = (5a - 1)/2 = 2, số phải tìm là 125
(b) nếu a = 3 thì b = (5a - 1)/2 = 7, số phải tìm là 375
Tóm lại, có 3 số đáp ứng yêu cầu của bài toán, đó là:
250, 125, 375
Tìm số tự nhiên có 4 chữ số ,biết rằng chữ số hàng trăm bằng 0 và nếu xóa chữ số 0 đó thì số ấy giảm 9 lần.
abc là số phải tìm
___
abc = 100a + 10b + c
Khi xóa số hàng trăm ta được số
__
bc = 10b + c
Theo giả thiết thì
100a + 10b + c = 5(10b + c)
100a + 10b + c chia hết cho 5 nên chữ số tận cùng phải bằng 0 hoặc 5
Ta xét 2 trường hợp:
(1) Nếu c = 0 thì 100a + 10b = 50b hay 100a = 40b
Suy ra b/a = 100/40 = 5/2
Vậy a = 2, b = 5, c = 0
Số phải tìm là 250
(2) Nếu c = 5 thì 100a + 10b + 5 = 50b + 25 hay 100a - 20 = 40b
Suy ra (5a - 1) = 2b
Vậy 5a - 1 phải là số chẵn, 5a là một số lẻ, và a là một số lẻ
Vì b ≤ 9 nên 5a - 1 ≤ 18. a ≤ 19/5, a < 4
a là một số lẻ nhỏ hơn 4. a có thể là 1 hay 3
(a) nếu a = 1 thì b = (5a - 1)/2 = 2, số phải tìm là 125
(b) nếu a = 3 thì b = (5a - 1)/2 = 7, số phải tìm là 375
Tóm lại, có 3 số đáp ứng yêu cầu của bài toán, đó là:
250, 125, 375
Tìm số tự nhiên có 4 chữ số, biết rằng chữ số hàng trăm bằng 0 và nếu xóa chữ số 0 đó thì số ấy giảm đi 9 lần.
abc là số phải tìm
___
abc = 100a + 10b + c
Khi xóa số hàng trăm ta được số
__
bc = 10b + c
Theo giả thiết thì
100a + 10b + c = 5(10b + c)
100a + 10b + c chia hết cho 5 nên chữ số tận cùng phải bằng 0 hoặc 5
Ta xét 2 trường hợp:
(1) Nếu c = 0 thì 100a + 10b = 50b hay 100a = 40b
Suy ra b/a = 100/40 = 5/2
Vậy a = 2, b = 5, c = 0
Số phải tìm là 250
(2) Nếu c = 5 thì 100a + 10b + 5 = 50b + 25 hay 100a - 20 = 40b
Suy ra (5a - 1) = 2b
Vậy 5a - 1 phải là số chẵn, 5a là một số lẻ, và a là một số lẻ
Vì b ≤ 9 nên 5a - 1 ≤ 18. a ≤ 19/5, a < 4
a là một số lẻ nhỏ hơn 4. a có thể là 1 hay 3
(a) nếu a = 1 thì b = (5a - 1)/2 = 2, số phải tìm là 125
(b) nếu a = 3 thì b = (5a - 1)/2 = 7, số phải tìm là 375
Tóm lại, có 3 số đáp ứng yêu cầu của bài toán, đó là:
250, 125, 375
gọi số phải tìm là: abc
theo đề bài : a0bc = abc x 9
a000 + bc = 9 x ( a00 + bc )
a x 1000 + bc = 900 x a + 9 x bc
a x 100 = 8 x bc
a x 25 = 2 x bc
vậy : a = 2 , bc = 25 , số phải tìm là :\(2025\)
ỦNG HỘ MK NHA !! CÁM ƠN !
gọi số phải tìm là: abc
theo đề bài : a0bc = abc x 9
a000 + bc = 9 x ( a00 + bc )
a x 1000 + bc = 900 x a + 9 x bc
a x 100 = 8 x bc
a x 25 = 2 x bc
vậy : a = 2 , bc = 25 , số phải tìm là :2025
tìm 1 số tự nhiên có 4 chữ số , biết rằng chữ số hàng trăm bằng 0 và nếu xóa chữ số 0 đó thì số ấy giảm 9 lần
gọi số cần tìm là a0cd
xóa chữ số 0 thì được acd
ta có :
acd x 9 = a0cd
( 100a + cd ) x 9 = 1000a + cd
900a + 9.cd = 1000a + cd
8.cd = 100a
=> 8.cd \(\le\)900
100a \(\le900\)
100a có thể bằng 100 ; 200 ; 300 ; 400 ; 500 ; 600 ; 700 ; 800 ; 900 .
8.cd = { 100 ; 200 ; 300 ; ... ; 900 }
xét các trường hợp :
+) 100 : 8 = 12 còn dư ( loại )
+) 200 : 8 = 25 ; 2025 : 9 = 225 ( chọn )
+) 300 : 8 = 37 còn dư ( loại )
+) 400 : 8 = 50 ; 4050 : 9 = 450 ( chọn )
+) 500 : 8 = 62 còn dư ( loại )
+) 600 : 8 = 75 ; 6075 : 9 = 675 ( chọn )
+) 700 : 8 = 87 còn dư ( loại )
+) 800 : 8 = 100 loại vì cd là số có hai chữ số
vậy số đó là : { 2025 ; 4050 ; 6075 ; }
abc là số phải tìm
___
abc = 100a + 10b + c
Khi xóa số hàng trăm ta được số
__
bc = 10b + c
Theo giả thiết thì
100a + 10b + c = 5(10b + c)
100a + 10b + c chia hết cho 5 nên chữ số tận cùng phải bằng 0 hoặc 5
Ta xét 2 trường hợp:
(1) Nếu c = 0 thì 100a + 10b = 50b hay 100a = 40b
Suy ra b/a = 100/40 = 5/2
Vậy a = 2, b = 5, c = 0
Số phải tìm là 250
(2) Nếu c = 5 thì 100a + 10b + 5 = 50b + 25 hay 100a - 20 = 40b
Suy ra (5a - 1) = 2b
Vậy 5a - 1 phải là số chẵn, 5a là một số lẻ, và a là một số lẻ
Vì b ≤ 9 nên 5a - 1 ≤ 18. a ≤ 19/5, a < 4
a là một số lẻ nhỏ hơn 4. a có thể là 1 hay 3
(a) nếu a = 1 thì b = (5a - 1)/2 = 2, số phải tìm là 125
(b) nếu a = 3 thì b = (5a - 1)/2 = 7, số phải tìm là 375
Tóm lại, có 3 số đáp ứng yêu cầu của bài toán, đó là:
250, 125, 375
Tìm số tự nhiên số 4 chữ số , biết rằng chữ số hàng trăm bằng 0 và nếu xóa chữ số 0 đó thì số ấy giảm 9 lần
Gạch đầu các số có chữ cho mk nhé
Gọi số tự nhiên có 4 chữ số là a0bc(a khác 0,b,c thuộc N và nhỏ hon 10)
nếu xóa chữ số 0 đó thì ta có số mới là:abc
Theo bài ra ta có:
abcx9=a0bc
(a x100+bc)x9=ax1000+bc
ax900+9xbc=ax1000+bc
9xbc-bc=ax1000-ax900
8xbc=ax100
2xbc=25xa
Vì số đã cho có 4 chữ số
=>2xbc nhỏ hơn hoặc bằng 199
=>25x a nhỏ hơn hoặc bằng 199
=>a nhỏ hơn hoặc bằng 3
=>a thuộc tập hợp{1,2,3} vì a khác 0
Nếu a=1 thì 25xa=2xbc
25x1=2xbc
25=2xbc(loại vì bc phải là số có 2 chữ số)
Nếu a=2 thì 25xa=2xbc
25x2=2xbc
=> bc=25
=> b=2,c=5
Nếu a=3 thì 25xa=2xbc
25x3=2xbc
75=2xbc(loại như a=1)
=>a=2,b=2,c=5
=>Số cần tìm là 2025
Vậy....
Gọi số cần tìm là a0cd,
xóa số 0 thì ta được acd
Ta có: acd . 9 = a0cd
=> (100a + cd) . 9 = 1000a + cd
=> 900a + 9.cd = 1000a + cd
=> 8 . cd = 100a
=> 8.cd bé hơn hoặc bằng 900
=> 100.a bé hơn hoặc bằng 900
100.a có thể bằng 100; 200; 300;...; 900
Xét các trường hợp:
+) 100 : 8 = 12 (dư 4) (loại)
+) 200:8 = 25; 2025 : 9 = 225 (chọn)
... (mình không ghi vì hơi dài bạn tự viết nhé)
+) 900 : 8 (dư 4) (loại)
Vậy số đó có thể là các số 2025; 4050; 6075