Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mai Anh Nguyen
Xem chi tiết
Ngô Cao Hoàng
Xem chi tiết
Thu Thao
7 tháng 2 2021 lúc 20:32

undefined

huyền
Xem chi tiết
huyền
Xem chi tiết
Trần Đức Thắng
14 tháng 7 2015 lúc 15:44

Biến đổi vế trái ta có 

(a+b+c)^2 = (a+b + c)( a+b+c) = a(a+b + c) + b(a+b+c ) + c (a+b+c )

                                              = a^2 + ab +ac + ab + b^2 + bc + ac + bc + c^2 

                                               = a^2 + b^2 + c^2 + 2ab + 2bc + 2ac => ĐPCM

Lê Phan Gia Phúc -6a6 22...
14 tháng 8 lúc 12:38

Ta có:

(a + b + c)2 = (a + b + c)(a + b + c)

= a2 + ab + ac + ab + b2 + bc + ac + bc + c2

= a2 + b2 + c2 + 2ab + 2bc + 2ac (đpcm)

Vậy (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ac.

Nguyen Duy Dai
Xem chi tiết
Trang Lê
Xem chi tiết

a2+b2+c2=(a+b+c)2<=> ab+bc+ca=0

\(\Rightarrow S=\frac{a^2}{a^2+bc-\left(ab+ca\right)}+\frac{b^2}{b^2+ac-\left(ab+bc\right)}+\frac{c^2}{c^2+ab-\left(bc+ca\right)}\)

\(=\frac{a^2}{\left(a-b\right)\left(a-c\right)}-\frac{b^2}{\left(b-c\right)\left(a-b\right)}-\frac{c^2}{\left(b-c\right)\left(c-a\right)}\)

\(=\frac{a^2\left(b-c\right)-b^2\left(a-c\right)-c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=1\)

M  tương tự

Khách vãng lai đã xóa
Nguyễn Đình Đoàn
Xem chi tiết
Cầm Dương
Xem chi tiết
Trà My
7 tháng 4 2017 lúc 21:01

Áp dụng bđt Cauchy Schwarz dạng Engel ta được:

\(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\ge\frac{\left(a+b+c\right)^2}{a^2+2bc+b^2+2ac+c^2+2ab}=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}\)=1

l҉o҉n҉g҉ d҉z҉
16 tháng 10 2020 lúc 6:43

Áp dụng bđt Cauchy-Schwarz dạng Engel ta có :

\(VT\ge\frac{\left(a+b+c\right)^2}{a^2+2bc+b^2+2ac+c^2+2ab}=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)

=> đpcm

Dấu "=" xảy ra <=> a = b = c 

Khách vãng lai đã xóa
phùng thị thu hải
Xem chi tiết
Tống Hiếu
13 tháng 3 2017 lúc 14:55

a) đáp án A=1

b) B=0

c) C=1