cho hình vuông ABCD và điểm M nằm trong tam giác ABC sao cho \(\widehat{BMC}=135^0\). Chứng minh rằng \(2MB^2+MC^2=MA^2\)
Cho hình vuông ABCD và M nằm trong tam giác ABC sao cho BMC=135 do
cm: 2MB^2+MC^2=MA^2
Cho tam giác ABC vuông cân tại B và M thuộc miền trong tam giác sao cho góc BMC =135 độ. Chứng minh MA2=2.MB2+MC2
Cho tam giác ABC vuông cân tại A, điểm M nằm trong tam giác ABC sao cho góc AMC = 135 độ. Chứng minh rằng:
\(MA^2=\frac{MB^2-MC^2}{2}\)
Vẽ tam giác MAD vuông cân tại A ( D và M nằm khác phía đối với AC), nối D với C
Bài làm
ta có: tam giác MAD vuông cân tại A
=> MA = AD ( tính chất tam giác vuông cân) => MA2 = AD2
góc AMD = góc ADM = 45 độ
mà \(\widehat{AMD}+\widehat{DMC}=\widehat{AMC}\)
thay số: 45 độ + góc DMC = 135 độ
góc DMC = 135 độ - 45 độ
góc DMC = 90 độ
\(\Rightarrow DM\perp MC⋮M\) ( định lí vuông góc)
Xét tam giác MAD vuông cân tại A
có: \(MA^2+AD^2=DM^2\left(py-ta-go\right)\)
\(\Rightarrow MA^2+MA^2=DM^2\)
2.MA2 = DM2
Xét tam giác DCM vuông tại M
có: \(DM^2+MC^2=CD^2\left(py-ta-go\right)\)
=> 2.MA2 + MC = CD2
\(\Rightarrow MA^2=\frac{CD^2-MC^2}{2}\) (1)
ta có: \(\widehat{BAM}+\widehat{MAC}=90^0\left(=\widehat{BAC}=90^0\right)\)
và \(\widehat{MAC}+\widehat{CAD}=90^0\left(=\widehat{MAD}=90^0\right)\)
\(\Rightarrow\widehat{BAM}+\widehat{MAC}=\widehat{MAC}+\widehat{CAD}\left(=90^0\right)\)
\(\Rightarrow\widehat{BAM}=\widehat{CAD}\)
Xét tam giác ABM và tam giác ACD
có: AB = AC (gt)
góc BAM = góc CAD (cmt)
AM = AD ( tam giác MAD vuông cân tại A)
\(\Rightarrow\Delta ABM=\Delta ACD\left(c-g-c\right)\)
=> MB = CD ( 2 cạnh tương ứng)
=> MB2 = CD2 (2)
Từ (1);(2) \(\Rightarrow MA^2=\frac{MB^2-MC^2}{2}\)
cho hình vuông ABCD và điểm P nằm trong tam giác ABC sao cho \(\widehat{BPC}\)=135o. Chứng minh PA2=PC2+2PB2
Cho tam giác đều ABC. Trong tam giác đều ABC lấy điểm M sao cho MB = MC và góc BMC = 900.
a. Cm tam giác AMB = tam giác AMC.
b. Trong tam giác BMC lấy điểm E sao cho góc EBC = góc ECM = 300. Chứng minh tam giác MCE cân.
c. Giả sử điểm M nằm trong tam giá ABC sao cho MA : MB : MC = 3 : 4 : 5. Tính góc AMB.
Ai xong và đúng mình k cho
Em tham khảo nhé!
Câu hỏi của channel Anhthư - Toán lớp 7 - Học toán với OnlineMath
cho tam giác ABC đều, lấy M nằm trong tam giác ABC sao cho góc BMC=150 độ. chứng minh BM^2+MC^2=MA^2
cho tam giác ABC vuông cân tại A. M nằm trong tam giác ABC sao cho : BM=BA và góc ABM=36 độ. chứng minh rằng: MA=MC. ( chứng minh bằng 2 cách)
Cho tam giác vuông cân ABC tại A. Lấy điểm M trong tam giác ABC sao cho góc AMC=1350. Chứng minh: \(MA^2=\frac{MB^2-MC^2}{2}\)
Cho tam giác đều ABC.Trong tam giác đều ABC lấy điểm M sao cho MB = MC và góc BMC =90 độ.
a)Chứng minh tam giác ABM = tam giác AMC
b)Trong tam giác BMC lấy điểm E sao cho góc EBC =góc ECM = 30 độ. Chứng minh tam giác MEC cân
c)Giả sử điểm M nằm trong tam giác ABC sao cho MA :MB :MC =3 :4 :5 . Tính góc AMB
mk ko bt lm câu b nha ~ xl
c,Vẽ tam giác đều AMD ( D thuộc nửa mặt phẳng bờ AM không chứa C)(Bạn tự vẽ hình nha, dễ như ăn kẹo ấy)
=> DM = AD = AM
Sau đó bạn chứng minh tam giác ADB = tam giác AMC (c.g.c) (cũng dễ thôi)
=> BD = MC (cặp cạnh tương ứng)
Ta có: DM = AM, BD = MC
=> DM : BM : BD = 3:4:5
=> tam giác BDM vuông tại M
=> góc AMB = 90o + 60o = 150o
a, Xét tam giác ABM và AMC có
BC=BA ( tam giác đều )
BMC=BMA=90độ
Góc C=A
=> ABM=AMC