Cho M là 1 điểm nằm trong hình chữ nhật ABCD, giả sử MA=3,MB=2,MC=1.Tính MD
Cho hình thang vuông ABCD (AD<AB, góc A=góc B=90độ), AB=a (a>0). Gọi O là trung điểm của AB.Trên cạnh AD lấy điểm E sao cho E nằm giữa A và D.Qua O kẻ đường thẳng vuông góc với OE cắt cạnh BC tại F.
a) CM tam giác OAE đồng dạng với tam giác FBO.Tính tích AE.BF theo a.
b) Gọi M là hình chiếu của O trên EF, H là hình chiếu của M trên AB.
CM rằng AE=EM và BE đi qua trung điểm của MH.
c) Tìm vị trí của điểm E trên AD để diện tích tứ giác ABFE nhỏ nhất.
cho hình thang cân abcd có ab//dc và ab<dc, đường chéo bd vuông góc với cạch bên bc. vẽ đường cao bh,ak
a, cm tam giác bdc đồng dạng tam giác hbc
b, cm bc^2=hc.dc
c,cm tam giác akd đồng dạng tam giác bhc
d, cho bc=15cm. dc=25cm. tính hc,hd
e, tính diện tích hình thang abcd
Cho tam giác ABC. M là điểm nằm trên cạnh BC kẻ MN song song với AB biết CM phần CB=2 phần3 và Chi vi tam giác ABC=90cm.tính chi vi tam giác MNC
Cho tam giác ABC vuông ở C có AC=9cm, AB=15cm. Từ trung điểm M của AB kẻ đường thẳng vuông góc với AB, cắt BC và AC lần lượt ở P và Q.
a) CM : tam giác ABC đồng dạng với tam giác AQM; từ đó suy ra AB mũ 2 =2.AC.AQ
b) Tính PQ.
c) tia AP cắt BQ tại N. CM : CN song song với AB.
d) tính diện tích ABNC.
1:Cho tam giác ABC vuông tại A,có:AB=6 cm,AC =8 cm,đường cao AH .Đường phân giác BD cắt AH tại 1 (D ϵAC).
a,Tính độ dài các đoạn thẳng BC,AD và DC.
b,Chứng minh:ΔABD ∼ ΔHBI
2:Cho hình lăng trụ đứng ABCD A'B'C'D'' có ABCD là hình chữ nhật.Tính thể tích của hình lăng trụ,biết AA' =8 cm,AB=3 cm,AC=5 cm
Cho tam giác ABC vuông tại A, đường cao AH.
a, Cm hai tam giác ABH và CBA đồng dạng với nhau.
b, Cm AB.AB= BH.BC
c, Gọi BI là đường phân giác của tam giác ABH.
Tính tỉ số AI/IH biết AB=3cm, AC=4 cm
d, Trên cạnh AC lấy M sao cho AM=1/3 Ac, trên tia đối tia HA lấy D sao cho HD=1/3HA. Chứng minh BD vuông góc DM
Cho tam giác ABC vuông cân tại A. Trên cạnh AC lấy M bất kì (M khác A,C) . Trên cạnh AB lấy E sao cho AE=CM. Gọi O là trung điểm cạnh BC
a, CM tam giác OEM vuông cân
b, Đường thẳng qua A và song song với ME, cắt tia BM tại N. Chứng minh CN _|_ AC
c, Gọi H là giao điểm của OM và AN. Chứng minh rằng tích AH.AN không phụ thuộc vào vị trí M trên cạnh AC
cho hình thang cân ABCD có AB//CD và AB<CD, đường chéo BD vuông góc với cạnh BC. vẽ đường cao AH
a) CM tam giác BDC đồng dạng với tam giác HBC
b) Cho BC=15cm, DC=25cm. tính HC,HD
c) tính S abcd