Cho M là số tự nhiên chứng tỏ rằng:
A=30*m+12 chia hết cho 6 nhưng không chia hết cho 5
a) Nếu tổng của hai số tự nhiên là một số lẻ thì tích của chúng có chia hết cho 2 không.
b) Chứng tỏ rằng với hai số tự nhiên bất kỳ khi chia cho m có cùng số dư thì hiệu của chúng chia hết cho m và ngược lại.
c) Chứng tỏ rằng với 6 số tự nhiên bất kỳ luôn có ít nhất hai số tự nhiên mà hiệu của chúng chia hết cho 5.
d) Chứng tỏ rằng tổng của 5 số tự nhiên liên tiếp không chia hết cho 4.
e) Chứng tỏ rằng tổng của 2 số chẵn liên tiếp luôn chia hết cho 8.
g) Cho 4 số tự nhiên không chia hết chia hết cho 5 , khi chia cho 5 được những số dư kháu nhau . Chứng minh rằng tổng của chúng chia hết cho 5.
h) Chứng minh rằng không có số tự nhiên nào mà chia cho 15 dư 6 còn chia 9 thì dư 1.
nhìn cái tên của m đã thấy ức chế r, thằng sỉ nhục tổ quốc!!!
Cho biểu thức: M = 5 + 52 + 53 + … + 580. Chứng tỏ rằng:
a) M chia hết cho 6.
b) M không phải là số chính phương.
a) M = \(5+5^2+5^3+...+5^{80}\)
\(\Leftrightarrow M=5.\left(1+5\right)+5^3\left(1+5\right)+...+5^{79}\left(1+5\right)\)
\(\Leftrightarrow M=5.6+5^3.6+...+5^{79}.6\)
\(\Leftrightarrow M=6.\left(5+5^3+...+5^{79}\right)⋮6\)
=> M chi hết cho 6 => điều phải chứng minh
) M = (5+5^2) + (5^3+5^4) + … + (5^79+5^80)
M = 5(1+5) + 5^3(1+5) + … + 5^79(1+5)
M= 5.6 + 5^3.6 + … + 5^79.6
M = 6(5+5^3+…+5^79) chia hết cho 6
b) Ta thấy : M = 5 + 52+ 53+ ... + 580 cchia hết cho số nguyên tố 5
Mặt khác, do: 52 + 53 + ... 580 chia hết cho 52 (vì tất cả các số hạng đều chia hết cho 52)
=> M = 5 + 52 + 53 + ... + 580 không chia hết cho 52 (do 5 không chia hết cho 52)
=> M chia hết cho 5 nhưng không chia hết cho 52
=> M không phải số chính phương
16. Chứng tỏ rằng:
a) Trong 2 số tự nhiên liên tiếp có một số chia hết cho 2.
b) Tổng ba số chẵn liên tiếp chia hết cho 6.
c) Tổng hai số chẵn liên tiếp không chia hết cho 4.
16. Chứng tỏ rằng:
a) Trong 2 số tự nhiên liên tiếp có một số chia hết cho 2.
b) Tổng ba số chẵn liên tiếp chia hết cho 6.
c) Tổng hai số chẵn liên tiếp không chia hết cho 4.
1
a,cho tổng A =20+125+350+x
Tìm điều kiện của x để: A chia hết cho 5; A không chia hết cho 5; A chia hết cho 2; A không chia hết cho 2
b,Phép chia n:12 có số dư 8.Hỏi n chia hết cho 4 không ; n chia hết cho 6 không
c,Phép chia m:36 có số dư 28.Hỏi m chia hết cho 2 không ; m chia hết cho 4 không
d,Chứng tỏ rằng với mọi n thuộc N thì 60n + 45 : (chia hết) 15 , nhưng không chia hết cho 30
khi chia số tự nhiên a cho 18 ta được số dư là 12 chứng tỏ rằng a chia hết cho 6, không chia hết cho 9
a, Cho tổng A = 125 mũ 100 + 350 + x
Tìm điều kiện của x để A chia hết cho 5 ; để A không chia hết cho 5 ; để A chia hết cho 2 ; để A không chia hết cho 2
b, phép chia n:12 có số dư là 9. Hỏi n chia hết cho 3 không ? n chia hết cho 4 không ?
c, phép chia m:36 có số dư là 18. Hỏi m:(chia hết) cho 4 không; m chia hết cho 9 không
d,Chứng tỏ rằng với mọi n thuộc N thì 54n + 36 :(chia hết) 18, nhưng không chia hết cho 30
Bài 1. Chứng tỏ 2022 . 15 + 25 chia hết cho 5
Bài 2: Chứng tỏ 1998 . 30 + 19 không chia hết cho 6
Bài 3. Cho x thuộc tập hợp {25; 49; 56; 100} và x - 35 không chia hết cho 7. Tìm x.
Bài 4. Số tự nhiên b chia cho 40 dư 8. Hỏi b có chia hết cho 4 không? có chia hết cho 5 không? Vì sao?
(giúp mình nha mình đang cần gấp )
Tải file lênBài 1:vì 15 chia hết cho 5 suy ra 2022.15 chia hết cho 5
vì 25 chia hết cho 5 suy ra 2022.15 + 25 chia hết cho 5
1) Khi chia số tự nhiên a cho 96, được số dư là 24. Hỏi số a có chia hết cho 6. cho 18 không ?
2) Cho số tự nhiên không chia hết cho 5 và khi chia chúng cho thì được các số dư khác nhau. Chứng minh rằng tổng chủa 5 đó chia hết cho 5
3)chứng tỏ rằng 1 số khi chia cho 60 dư 45 thì hia hết cho 15 mà không chia hết cho 30
4)Chứng minh rằng không có số tự nhiên nào chia cho 21 dư 5 còn chia 9 dư 1
5)Tìm số tự nhiên n để:
a)n+4 chia hết n
b)3n+5 chia hết cho n
c)27-4n chia hết cho n
(Các bạn giúp mình với, làm bài nào cũng được)
d)n+6 chia hết cho n+1
e)2n+3 chia hết cho n-2
d) Ta có: n + 6 chia hết cho n+1
n+1 chia hết cho n+1
=> [(n+6) - (n+1)] chia hết cho n+1
=> (n+6 - n - 1) chia hết cho n + 1
=> 5 chia hết cho n+1
=> n+1 thuộc { 1; 5 }
Nếu n+1 = 1 thì n = 1-1=0
Nếu n+1=5 thì n= 5-1=4.
Vậy n thuộc {0;4}
e) Ta có: 2n+3 chia hết cho n-2 (1)
n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)
Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2
=> (2n+3 - 2n +4) chia hết cho n-2
=> 7 chia hết cho n-2
Sau đó xét các trường hợp tương tự như phần d.
e) Ta có: 2n+3 chia hết cho n-2 (1)
n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)
Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2
=> (2n+3 - 2n +4) chia hết cho n-2
=> 7 chia hết cho n-2
Sau đó xét các trường hợp tương tự như phần d.
d) Ta có: n + 6 chia hết cho n+1n+1 chia hết cho n+1
=> [(n+6) - (n+1)] chia hết cho n+1
=> (n+6 - n - 1) chia hết cho n + 1
=> 5 chia hết cho n+1
=> n+1 thuộc { 1; 5 }
Nếu n+1 = 1 thì n = 1-1=0
Nếu n+1=5 thì n= 5-1=4.
Vậy n thuộc {0;4}