Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bảo hay Bẻo ????=))
Xem chi tiết
Hà trung
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 11 2017 lúc 12:44

Số ước của A chỉ chứa thừa số nguyên tố là x thừa số, chỉ chứa thừa số nguyên tố b là y thừa số, chỉ chứa thừa số nguyên tố c là z thừa số, chỉ chứa thừa số nguyên tố ab là xy thừa số, chỉ chứa thừa số nguyên tố ac là xz thừa số, chỉ chứa thừa số nguyên tố bc là yz thừa số, chỉ chứa thừa số nguyên tố abc là xyz thừa số. Vì A là ước của chính nó, do đó số ước của A bằng:

x+y+z+xy+yz+zx+xyz+1 = x(z+1)+y(z+1)+xy(z+1)+z+1 = (z+1)(x+y+xy+1)

= (z+1)[(x+1)+y(x+1)] = (z+1)(y+1)(x+1)

VŨ BÙI BẢO NGÂN
Xem chi tiết
Pham Anh Quan
22 tháng 4 2023 lúc 21:58

 đại số

Trịnh Phương Linh
Xem chi tiết
Lê Song Phương
25 tháng 8 2023 lúc 21:35

a) Ta đặt \(P\left(x\right)=x^2+x+1\)

\(P\left(x\right)=x^2+x-20+21\)

\(P\left(x\right)=\left(x+5\right)\left(x-4\right)+21\)

Giả sử tồn tại số tự nhiên \(x\) mà \(P\left(x\right)⋮9\) \(\Rightarrow P\left(x\right)⋮3\). Do \(21⋮3\)  nên \(\left(x+5\right)\left(x-4\right)⋮3\)

Mà 3 là số nguyên tố nên suy ra \(\left[{}\begin{matrix}x+5⋮3\\x-4⋮3\end{matrix}\right.\)

Nếu \(x+5⋮3\) thì suy ra \(x-4=\left(x+5\right)-9⋮3\) \(\Rightarrow\left(x+4\right)\left(x-5\right)⋮9\)

Lại có \(P\left(x\right)⋮9\) nên \(21⋮9\), vô lí.

Nếu \(x-4⋮3\) thì suy ra \(x+5=\left(x-4\right)+9⋮3\) \(\Rightarrow\left(x+4\right)\left(x-5\right)⋮9\)

Lại có \(P\left(x\right)⋮9\) nên \(21⋮9\), vô lí.

Vậy điều giả sử là sai \(\Rightarrow x^2+x+1⋮̸9\)

b) Vì \(x^2+x+1⋮̸9\) nên \(y\le1\Rightarrow y\in\left\{0;1\right\}\)

Nếu \(y=0\Rightarrow x^2+x+1=1\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=-1\left(loại\right)\end{matrix}\right.\)

Nếu \(y=1\) \(\Rightarrow x^2+x+1=3\)

\(\Leftrightarrow x^2+x-2=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-2\left(loại\right)\end{matrix}\right.\)

Vậy ta tìm được các cặp số (x; y) thỏa ycbt là \(\left(0;0\right);\left(1;1\right)\)

Nguyễn Lý Kim Linh
25 tháng 8 2023 lúc 21:44

a) Ta đặt 

(

)
=

2
+

+
1
P(x)=x 
2
 +x+1


(

)
=

2
+


20
+
21
P(x)=x 
2
 +x−20+21


(

)
=
(

+
5
)
(


4
)
+
21
P(x)=(x+5)(x−4)+21

Giả sử tồn tại số tự nhiên 

x mà 

(

)

9
P(x)⋮9 


(

)

3
⇒P(x)⋮3. Do 
21

3
21⋮3  nên 
(

+
5
)
(


4
)

3
(x+5)(x−4)⋮3. 

Mà 3 là số nguyên tố nên suy ra 
[

+
5

3


4

3

  
x+5⋮3
x−4⋮3

 

Nếu 

+
5

3
x+5⋮3 thì suy ra 


4
=
(

+
5
)

9

3
x−4=(x+5)−9⋮3 

(

+
4
)
(


5
)

9
⇒(x+4)(x−5)⋮9

Lại có 

(

)

9
P(x)⋮9 nên 
21

9
21⋮9, vô lí.

Nếu 


4

3
x−4⋮3 thì suy ra 

+
5
=
(


4
)
+
9

3
x+5=(x−4)+9⋮3 

(

+
4
)
(


5
)

9
⇒(x+4)(x−5)⋮9

Lại có 

(

)

9
P(x)⋮9 nên 
21

9
21⋮9, vô lí.

Vậy điều giả sử là sai \Rightarrow x^2+x+1⋮̸9

b) Vì x^2+x+1⋮̸9 nên 


1



{
0
;
1
}
y≤1⇒y∈{0;1}

Nếu 

=
0


2
+

+
1
=
1
y=0⇒x 
2
 +x+1=1



(

+
1
)
=
0
⇔x(x+1)=0


[

=
0
(




)

=

1
(




)
⇔[ 
x=0(nhận)
x=−1(loại)

 

Nếu 

=
1
y=1 


2
+

+
1
=
3
⇒x 
2
 +x+1=3



2
+


2
=
0
⇔x 
2
 +x−2=0


(


1
)
(

+
2
)
=
0
⇔(x−1)(x+2)=0


[

=
1
(




)

=

2
(




)
⇔[ 
x=1(nhận)
x=−2(loại)

 

Vậy ta tìm được các cặp số (x; y) thỏa ycbt là 
(
0
;
0
)
;
(
1
;
1
)
(0;0);(1;1)

Hà Quang Minh đã xóa
Hoàng Thị Vân Anh
Xem chi tiết
Nguyen Danh Huy
18 tháng 10 2016 lúc 15:55

trong sách bài tập toán 7 tập 1, soắn 11, bài 115 có bài tương tự đấy bạn

nguyen ha
Xem chi tiết
Hoàng Thị Thu Hà
13 tháng 8 2016 lúc 21:17

Giả sử \(x>y\)

Ta có: \(x^2< x^2+y< x^2+x< x^2+x+1=\left(x+1\right)^2\)

\(\Rightarrow x^2+y\)không phải số nguyên

=> Không tồn tại x, y thỏa mãn (ĐPCM)

nguyen ha
17 tháng 8 2016 lúc 21:33

thiếu rồi !

lê thị thanh ngà
10 tháng 12 2016 lúc 20:41

câu trả lời này có đúng ko v bn

quốc khánh hoàng
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 8 2017 lúc 10:33