chứng tỏ 350 - 54 chia hết cho 27
a) Cho S = 5 + 52+ 53 + 54 + 55 + 56 +…+ 52012. Chứng tỏ S chia hết cho 65.
b) Tìm số tự nhiên nhỏ nhất sao cho khi chia cho 11 dư 6, chia cho 4 dư 1và chia cho 19 dư 11.
c) Chứng tỏ: A = 10n+ 18n - 1 chia hết cho 27 (với n là số tự nhiên)
a. S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012.
S = (5 + 52 + 53 + 54) + 55(5 + 52 + 53 + 54)+....+ 52009(5 + 52 + 53 + 54)
Vì (5 + 52 + 53 + 54) = 780 chia hết cho 65
Vậy S chia hết cho 65
b. Gọi số cần tìm là a ta có: (a - 6) chia hết cho 11; (a - 1) chia hết cho 4; (a - 11) chia hết cho 19.
(a - 6 + 33) chia hết cho 11; (a - 1 + 28) chia hết cho 4; (a - 11 + 38) chia hết cho 19.
(a + 27) chia hết cho 11; (a + 27) chia hết cho 4; (a + 27) chia hết cho 19.
Do a là số tự nhiên nhỏ nhất nên a + 27 nhỏ nhất
Suy ra: a + 27 = BCNN (4;11; 19).
Từ đó tìm được: a = 809
A = 10n + 18n - 1 = 10n - 1 - 9n + 27n
a) Cho S = 5 + 52 + 53 + 54 + 55 + 56 +…+ 52012. Chứng tỏ S chia hết cho 65.
b) Tìm số tự nhiên nhỏ nhất sao cho khi chia cho 11 dư 6, chia cho 4 dư 1 và chia cho 19 dư 11.
c) Chứng tỏ: A = 10n + 18n - 1 chia hết cho 27 (với n là số tự nhiên)
a. S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012.
S = (5 + 52 + 53 + 54) + 55(5 + 52 + 53 + 54)+....+ 52009(5 + 52 + 53 + 54)
Vì (5 + 52 + 53 + 54) = 780 chia hết cho 65
Vậy S chia hết cho 65
b. Gọi số cần tìm là a ta có: (a - 6) chia hết cho 11; (a - 1) chia hết cho 4; (a - 11) chia hết cho 19.
(a - 6 + 33) chia hết cho 11; (a - 1 + 28) chia hết cho 4; (a - 11 + 38) chia hết cho 19.
(a + 27) chia hết cho 11; (a + 27) chia hết cho 4; (a + 27) chia hết cho 19.
Do a là số tự nhiên nhỏ nhất nên a + 27 nhỏ nhất
Suy ra: a + 27 = BCNN (4;11; 19).
Từ đó tìm được: a = 809
A = 10n + 18n - 1 = 10n - 1 - 9n + 27n
Ta biết số n và số có tổng các chữ số bằng n có cùng số dư khi chia cho 9 do đó nên
* Vậy A chia hết cho 27
Chứng tỏ rằng số 545-544 chia hết cho 3.
chứng tỏ rằng :27^8-3^21 chia hết có 26 ;8^12-2^33-2^30 chia hết có 50
\(27^8-3^{21}=\left(3^3\right)^8-3^{21}=3^{24}-3^{21}=3^{21}.\left(3^3-1\right)=3^{21}.26\) chia hết cho 26
\(8^{12}-2^{33}-2^{30}=8^{12}-\left(2^3\right)^{11}-\left(2^3\right)^{10}=8^{12}-8^{11}-8^{10}\)
\(=8^{10}.\left(8^2-8-1\right)=8^{10}.55\)
hình như đề sai ở câu sau nhé bn,chia hết cho 55 thôi
chứng tỏ rằng trong 27 số tự nhiên tùy ý luôn tồn tại hai số sao cho tổng hoặc hiệu của chúng chia hết cho 50
trả lời nhanh mk tích cho 10 cái nhưng phải đúng
Câu hỏi của nguyen anh thu - Toán lớp 6 - Học toán với OnlineMath
Bạn tham khảo.
chứng tỏ trong 27 stn tùy ý luôn tồn tại 2 số sao cho tổng hoặc hiệu của chúng chia hết cho 50
các số dư của mọi stn khi chia cho 50 gồm 0,1,2,3,...,49
xét các số dư trên thành 26 nhóm , ta đc:(0);(1,49);(2,48);...;(25)
với 27 stn tùy ý có ít nhất 27 số dư
xét 27 số này vào 26 nhóm trên thì sẽ có ít nhất 2 số cùng nhóm.
vậy ....
Em kham khảo link này nhé.
Câu hỏi của Hoàng Vũ Trần - Toán lớp 6 - Học toán với OnlineMath
Chúc em hok tốt
Chứng minh rằng :
c. 81^7 - 27^9 - 9^13 chia hết cho 45
d. 24^54 . 54^24. 2^10 chia hết cho 7263
c: \(81^7-27^9-9^{13}\)
\(=3^{28}-3^{27}-3^{26}\)
\(=3^{26}\left(3^2-3-1\right)\)
\(=3^{24}\cdot45⋮45\)
abc chia hết cho 27 . Chứng tỏ rằng bca chia hết cho 27
abc chia hết cho 27 suy ra a+b+c chia hết cho 27.
Vậy bca cũng chia hết cho 27 vì b+c+a = a+b+c chia hết cho 27.
mình cũng học lớp 6 nè nhớ k cho mình nhé
chia hết cho 27 đồng nghĩa với a+b+c chia hết cho 27
suy ra b+c+a chia hết cho 27
ban dinh tuan viet va ban con lai deu sai the con so 128\(⋮27nhung1+2+8co⋮27dau\)
abc chia hết cho 27 . Chứng tỏ rằng bca chia hết cho 27
abc chia hết cho 27 => 100a + 10 b + c chia hết cho 27
100a + 10b + c = 81a + (19a + 10b+ c). Vì 81a chia hết cho 27 nên 19a + 10b + c chia hết cho 27
Ta có: bca = 100b + 10c + a = 81b + (19b + 10c + a) = 81b + (19a + 10b + c) + (9b + 9c - 18a)
= 81b + (19a + 10b + c) + 9.(b +c - 2a) (1)
Nhận xét: 81b và (19a + 10b + c) đều chia hết cho 27 (2)
b+ c - 2a = (b+c+a) - 3a luôn chia hết cho 3 (Vì abc chia hết cho 27 nên chia hết cho 3 => a+b + c chia hết cho 3)
=> 9.(b+c- 2a) chia hết cho 27 (3)
(1)(2)(3) => bca chia hết 27
Giả sử abc chia hết cho 27 thì trước hết abc phải chia hết cho 9 \(=\)\(\Rightarrow\) a+b+c chia hết cho 9
=> bca cũng chia hết cho 9 => bca = 9m (m \(\in\) N)
ta có: abc = 27k với (k \(\in\) N)
abc - bca = 27k - 9m
<=> (100a + 10b + c) - (100b + 10c + a) = 9(3k-m)
<=> 99a - 90b - 9c = 9(3k - m)
<=> 11a - 10b - c + m = 3k
<=> 21a - 10(a+b+c) + 9c + m = 3k
Vế phải chia hết cho 3 mà các số: 21a ; 10(a+b+c) và 9c đều chia hết cho 3
=> m cũng chia hết cho 3
=> m = 3n (n \(\in\) N)
=> bca = 9m = 27n => bca chia hết cho 27 \(\left(ĐPCM\right)\).