Tìm nghiệm của các đa thức sau:
a) \(\frac{3}{2}\left(x+5\right)-\left(\frac{7}{2}-x\right)\) b) \(x^2-7x+6\)
Ai làm đúng mk sẽ tick cho
Tìm nghiệm của đa thức sau:
\(C\left(x\right)=-1\frac{1}{3}x^2+x\)
Ai làm đúng mk sẽ tick cho!
\(C\left(x\right)=-1\frac{1}{3}x^2+x=-\frac{4}{3}x^2+x\)
Cho \(C\left(x\right)=0\Rightarrow-\frac{4}{3}x^2+x=0\)
\(\Rightarrow x\left(-\frac{4}{3}x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\-\frac{4}{3}x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\-\frac{4}{3}x=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{4}\end{cases}}\)
Vậy đa thức C(x) có tập nghiệm là \(x\in\left\{0;\frac{3}{4}\right\}\).
C (x) = 0
=> \(-1\frac{1}{3}\) x2 + x =0
=> \(\frac{-4}{3}\) x2 + x =0
=> x( \(\frac{-4}{3}\) x +1 ) = 0
=> \(\orbr{\begin{cases}x=0\\1+\frac{-4}{3}\end{cases}}x=0\)
=> \(\orbr{\begin{cases}x=0\\\frac{-4}{3}\end{cases}}x=-1\)
=> \(\orbr{\begin{cases}x=0\\x=\frac{3}{4}\end{cases}}\)
Vậy đa thức C(x) có 2 nghiệm là x=0; x=\(\frac{3}{4}\)
chỗ \(\frac{-4}{3}\) x + 1 =0 mình viết hơi lỗi
\(B=\frac{2\cdot\left(x^2+x+1\right)}{x^2+1}\)
TÌM GIÁ TRỊ NHỎ NHẤT CỦA ĐA THỨC B
mn giải giúp mk nhak
ai làm đúng mk tick cho nk
2(x^2+x+1)/(x^2+1)
=2x^2+2x+2/x^2+1
=x^2+1/x^2+1+(x+1)^2/x^2+1
=1+(x+1)^2/(x^2+1)
ta có (x+1)2/(x^2+1) luôn lớn hơn hoặc bằng 0 do hai cái đều lớn hơn 0
suy ra GTNN của (x+1)^2/(x^2+1)=0 tại x=-1
vậy GTNN của B=1 tại x=-1
cho 2 đa thức sau
\(f\left(x\right)=2x-\frac{1}{3}x^2+5-x^4+3x^3\)
\(g\left(x\right)=3x^3-2x+x^4-\frac{2}{3}x^2-10\)
a) sắp xếp các đa thức trên theo lũy thừa giảm dần của biến
b) tính\(f\left(x\right)+g\left(x\right)\)
c) trong các số 1;-1 số nào là nghiệm của đa thức \(f\left(x\right)+g\left(x\right)\)
mn giúp mik vs, ko thì chỉ mik cách làm câu c cũng đc, mik cần gấp, mong mn giúp đỡ, hứa sẽ tick 3 tick cho bn giúp mik. Cảm mơn trc nha!!!!!!!!!
a) \(f\left(x\right)=-x^4+3x^3-\frac{1}{3}x^2+2x+5\)
\(g\left(x\right)=x^4+3x^3-\frac{2}{3}x^2-2x-10\)
b) \(f\left(x\right)+g\left(x\right)=-x^4+3x^3-\frac{1}{3}x^2+2x+5+x^4+3x^3-\frac{2}{3}x^2-2x-10\)
\(=6x^3-x^2-5\)
c) +) Thay x=1 vào đa thức f(x) + g(x) ta được :
\(6.1^3-1^2-5=0\)
Vậy x=1 là nghiệm của đa thức f(x) + g(x)
+) Thay x=-1 vào đa thức f(x) + g(x) ta được :
\(6.\left(-1\right)^3-\left(-1\right)^2-5=-10\)
Vậy x=-1 ko là nghiệm của đa thức f(x) + g(x)
Tìm x để
1) \(A=\left(x-\frac{1}{2}\right).\left(x-\frac{4}{5}\right)\) là số dương
2) \(B=\left(x+\frac{1}{7}\right).\left(x-\frac{2}{3}\right)\) là số âm
Ai nhanh và đúng mk tick cho
1/
\(A\)dương \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-\frac{1}{2}\right)>0\\x-\frac{4}{5}>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>0+\frac{1}{2}\\x>0+\frac{4}{5}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>\frac{1}{2}\\x>\frac{4}{5}\end{cases}}\Leftrightarrow x>0,8\)
2/ Làm tương tự nhưng có 2 trường hợp nên bạn làm từng trường hợp nhé ..!
Tìm 1 nghiệm của đa thức sau :
a) \(P\left(x\right)=7x^2-5x-2\)
b) \(Q\left(x\right)=\frac{1}{3}x^2+\frac{2}{5}x-\frac{11}{15}\)
a) \(7x^2-5x-2\) ( a = 7 ; b = -5 ; c = -2 )
Ta có : 7 + (-5) + (-2) = 0 => đa thức p(x) có 1 nghiệm là x = 1
b) \(\frac{1}{3}x^2+\frac{2}{5}x-\frac{11}{15}\) ( a = \(\frac{1}{3}\) ; = \(\frac{2}{5}\) ; c = \(\frac{-11}{15}\) )
Ta có : \(\frac{1}{3}+\frac{2}{5}-\frac{11}{15}\) = 0 => đa thức Q(x) có 1 nghiệm là x = -1
Cho 2 đa thức:
\(A\left(x\right)=-5x^3+3x^4+\frac{5}{7}-8x^2-10x\)
\(B\left(x\right)=-2x^4-\frac{2}{7}+7x^2+8x^3+6x\)
1) Hãy sắp xếp các hạng tử của mỗi đa thức trên theo lũy thừa giảm dần của biến
2) Tính \(A\left(x\right)+B\left(x\right)\)và \(A\left(x\right)-B\left(x\right)\)
1) \(A\left(x\right)=-5x^3+3x^4+\frac{5}{7}-8x^2-10x\)
\(A\left(x\right)=3x^4-5x^3-8x^2-10x+\frac{5}{7}\)
\(B\left(x\right)=-2x^4-\frac{2}{7}+7x^2+8x^3+6x\)
\(B\left(x\right)=-2x^4+8x^3+7x^2+6x-\frac{2}{7}\)
2) \(A\left(x\right)=3x^4-5x^3-8x^2-10x+\frac{5}{7}\)
+
\(B\left(x\right)=-2x^4+8x^3+7x^2+6x-\frac{2}{7}\)
\(A\left(x\right)+B\left(x\right)=x^4+3x^3-x^2-4x+\frac{3}{7}\)
\(A\left(x\right)=3x^4-5x^3-8x^2-10x+\frac{5}{7}\)
-
\(B\left(x\right)=-2x^4+8x^3+7x^2+6x-\frac{2}{7}\)
\(A\left(x\right)-B\left(x\right)=5x^4-13x^3-15x^2-16x+1\)
Câu 1 : Tìm giá trị của biểu thức M = \(\frac{2x^2+3x-2}{x+2}\)
Câu 2 : Thu gọn đơn thức trong biểu thức sau :
\(C=\frac{7}{9}x^3y^2.\left(\frac{6}{11}axy^3\right)+\left(-5bx^2y^4\right).\left(\frac{-1}{2}axz\right)+ax.\left(x^2y\right)^3\)
Làm nhanh nha m.n
Mình đang cần gấp
Ai làm đúng cho 2 tick
cho đa thức \(f\left(x\right)=4\cdot x^2+3x+1\); \(g\left(x\right)=3x^2-2x+1\); \(k\left(x\right)=7\cdot x^2-35x+42\)
a) tính f(x)-g(x)=h(x)
b) tính nghiệm của h(x) và k(x)
c) tìm gia trị của đa thức h(x) biết:
\(\left(x^2-9\right)^{2021}=\left(\frac{3}{4}-81\right)\cdot\left(\frac{3^2}{5}-81\right)^2\cdot\left(\frac{3^2}{6}-81\right)^3\cdot\cdot\cdot\left(\frac{3^{2020}}{2023}-81\right)^{2020}\)
a, Ta có : \(f\left(x\right)-g\left(x\right)=h\left(x\right)\)hay
\(4x^2+3x+1-3x^2+2x-1=h\left(x\right)\)
\(\Rightarrow h\left(x\right)=x^2+5x\)
b, Đặt \(h\left(x\right)=x^2+5x=0\Leftrightarrow x\left(x+5\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
Vậy nghiệm của đa thức h(x) là x = -5 ; x = 0
Đặt \(k\left(x\right)=7x^2-35x+42=0\)
\(\Leftrightarrow7\left(x^2+5x+6\right)=0\)
\(\Leftrightarrow7\left(x^2+2x+3x+6\right)=0\Leftrightarrow7\left(x+2\right)\left(x+3\right)=0\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-3\end{cases}}\)
Vậy nghiệm của đa thức k(x) là x = -3 ; x = -2
xin lỗi mọi người 1 tý nha cái phần c) ý ạ đề thì vậy như thế nhưng có cái ở phần biểu thức ở dưới ý là
\(\left(\frac{3^2}{6}-81\right)^3\) chuyển thành \(\left(\frac{3^3}{6}81\right)^3\)
bị sai mỗi thế thôi ạ mọi người giúp em với ạ
là \(\left(\frac{3^3}{6}-81\right)^3\)ạ
Tìm giá trị lớn nhất của biểu thức
a) 5 + \(\frac{15}{4\left|3x+7\right|+3}\) b) \(\frac{-1}{3}+\frac{21}{8\left|15x-21\right|+7}\) c) \(\frac{4}{5}+\frac{20}{\left|3x+5\right|+\left|4y+5\right|+8}\)
d) \(-6+\frac{24}{2\left|x-2y\right|+3\left|2x+1\right|+7}\) e) \(\frac{2}{3}+\frac{21}{\left(x+3y\right)^2+5\left|x+5\right|+14}\)
Các bạn làm đc câu nào thì làm nhé
Ai đúng mk sẽ tik / cảm ơn
Vì bài dài quá nên mình làm một bài rồi bạn tự làm như vậy nha ! Vì đề này cũng tương tự nhau cả nha bạn !
Nhưng mình không chắc lắm ! Bài này rối quá !
\(\frac{4}{5}+\frac{20}{\left|3x+5\right|+\left|4y+5\right|+8}\)
Biểu thức trên đạt GTLN khi \(\frac{20}{\left|3x+5\right|+\left|4y+5\right|+8}\) đạt GTLN
\(\Leftrightarrow\text{ }\left|3x+5\right|+\left|4y+5\right|+8\) nhỏ nhất
\(\Rightarrow\text{ }\left|3x+5\right|+\left|4y+5\right|\) phải nhỏ nhất vì \(\text{ }\left|3x+5\right|\ge0\text{ và }\left|4y+5\right|\ge0\) nên khi cộng với 8 mới có GTNN
Ta có : \(\left|3x+5\right|\ge3x+5\) . Dấu " = " xảy ra khi \(3x+5\ge0\) \(\Rightarrow\text{ }3x\ge-5\) \(\Rightarrow\text{ }x\ge-\frac{5}{3}\)
\(\left|4y+5\right|\ge4y+5\).. Dấu " = " xảy ra khi \(4y+5\ge0\) \(\Rightarrow\text{ }4y\ge-5\) \(\Rightarrow\text{ }y\ge-\frac{5}{4}\)
Mà \(\left|3x+5\right|+\left|4y+5\right|\) nhỏ nhất \(\Rightarrow\text{ }x,y\text{ nhỏ nhất }\)
Vậy \(x=-\frac{5}{3}\) , \(y=-\frac{5}{4}\)
\(\Rightarrow\text{ }\left|3x+5\right|+\left|4y+5\right|\ge\left(3x+5\right)+\left(4y+5\right)\)
\(\left|3x+5\right|+\left|4y+5\right|\ge\left(3x+4y\right)+10\)
Thay \(x=-\frac{5}{3}\) , \(y=-\frac{5}{4}\) vào vế phải của biểu thức ta được :
\(\left|3x+5\right|+\left|4y+5\right|\ge\left(3\cdot\frac{-5}{3}+4\cdot\frac{-5}{4}\right)+10\)
\(\left|3x+5\right|+\left|4y+5\right|\ge\left(-5+\left(-5\right)\right)+10\)
\(\left|3x+5\right|+\left|4y+5\right|\ge0\)
Vậy min \(\left|3x+5\right|+\left|4y+5\right|=0\)
\(\Rightarrow\text{ min }\left|3x+5\right|+\left|4y+5\right|+8=8\)
\(\Rightarrow\text{ }\frac{4}{5}+\frac{20}{\left|3x+5\right|+\left|4y+5\right|+8}\le\frac{4}{5}+\frac{20}{8}=\frac{33}{10}\)
\(\Rightarrow\text{ Max }\frac{4}{5}+\frac{20}{\left|3x+5\right|+\left|4y+5\right|+8}=\frac{33}{10}\)
Làm mẫu
a) Ta có: \(\left|3x+7\right|\ge0\)
\(\Leftrightarrow4\left|3x+7\right|\ge0\)
\(\Leftrightarrow4\left|3x+7\right|+3\ge3\)
\(\Leftrightarrow\frac{15}{4\left|3x+7\right|+3}\le5\)
\(\Leftrightarrow5+\frac{15}{4\left|3x+7\right|+3}\le10\)
Vậy GTLN của bt là 10\(\Leftrightarrow x=\frac{-7}{3}\)