Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 7 2017 lúc 16:27

a) Vì a, b, c là độ dài 3 cạnh của một tam giác

⇒ a + c > b và a + b > c (Bất đẳng thức tam giác)

⇒ a + c – b > 0 và a + b – c > 0

Ta có: (b – c)2 < a2

⇔ a2 – (b – c)2 > 0

⇔ (a – (b – c))(a + (b – c)) > 0

⇔ (a – b + c).(a + b – c) > 0 (Luôn đúng vì a + c – b > 0 và a + b – c > 0).

Vậy ta có (b – c)2 < a2 (1) (đpcm)

b) Chứng minh tương tự phần a) ta có :

( a – b)2 < c2 (2)

(c – a)2 < b2 (3)

Cộng ba bất đẳng thức (1), (2), (3) ta có:

(b – c)2 + (c – a)2 + (a – b)2 < a2 + b2 + c2

⇒ b2 – 2bc + c2 + c2 – 2ca + a2 + a2 – 2ab + b2 < a2 + b2 + c2

⇒ 2(a2 + b2 + c2) – 2(ab + bc + ca) < a2 + b2 + c2

⇒ a2 + b2 + c2 < 2(ab + bc + ca) (đpcm).

Bùi Nhật Vy
Xem chi tiết
ST
18 tháng 7 2018 lúc 10:05

Ta có; \(a^2+b^2+c^2=ab+bc+ca\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)

\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Mà \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(c-a\right)^2\ge0\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow a=b=c}\)

Vậy...

Nguyễn Quốc Thịnh
Xem chi tiết
Slime
24 tháng 11 2022 lúc 19:35

a = float(input("Nhap a : "))
b = float(input("Nhap b : "))
c = float(input("Nhap c : "))
if a+b>c and a+c>b and b+c>a:
    if a==b or a==c or b==c:
        if a==c==b:
            print("Day la ba canh cua tam giac deu")
        else:
            print("Day la ba canh cua tam giac can")
    elif (a**2)+(b**2)==c**2 or (a**2)+(c**2)==b**2 or (c**2)+(b**2)==a**2:
        print("Day la ba canh cua tam giac vuong")
    else:
        pass
else:
    print("Day khong phai ba canh cua tam giac")

Nguyễn Sỹ Bách
Xem chi tiết
Dũng Ko Quen
Xem chi tiết
Akai Haruma
16 tháng 4 2021 lúc 22:45

** Lần sau bạn lưu ý viết đề bằng công thức toán (hộp công thức nằm ở nút biểu tượng $\sum$ bên trái khung soạn thảo)

Lời giải:

a) Vì $a,b,c$ là độ dài 3 cạnh tam giác nên theo BĐT tam giác ta có:

$c< a+b\Rightarrow c^2< c(a+b)$

$b< a+c\Rightarrow b^2< b(a+c)$

$a<b+c\Rightarrow a^2< a(b+c)$

$\Rightarrow a^2+b^2+c^2< c(a+b)+b(a+c)+a(b+c)$

hay $a^2+b^2+c^2< 2(ab+bc+ac)$ (đpcm)

b) 

Áp dụng BĐT Bunhiacopxky:

$\text{VT}[a(b+c-a)+b(a+c-b)+c(a+b-c)]\geq (a+b+c)^2$

$\text{VT}[2(ab+bc+ac)-(a^2+b^2+c^2)]\geq (a+b+c)^2$

$\Rightarrow \text{VT}\geq \frac{(a+b+c)^2}{2(ab+bc+ac)-(a^2+b^2+c^2)}(*)$

Mà theo BĐT Cô-si:

$a^2+b^2+c^2\geq ab+bc+ac\Rightarrow a^2+b^2+c^2\geq \frac{(a+b+c)^2}{3}$. Do đó:

$2(ab+bc+ac)-(a^2+b^2+c^2)=(a+b+c)^2-2(a^2+b^2+c^2)$

$\leq (a+b+c)^2-2.\frac{(a+b+c)^2}{3}=\frac{(a+b+c)^2}{3}(**)$

Từ $(*); (**)\Rightarrow \text{VT}\geq 3$ (đpcm)

Dấu "=" xảy ra khi $x=y=z$

Akai Haruma
16 tháng 4 2021 lúc 22:49

Lời giải khác của câu b

Đặt $b+c-a=x; a+c-b=y; a+b-c=z$. Theo BĐT tam giác thì $x,y,z>0$

$\Rightarrow c=\frac{x+y}{2}; a=\frac{y+z}{2}; b=\frac{x+z}{2}$

Bài toán trở thành:

Cho $x,y,z>0$. CMR $\frac{y+z}{2x}+\frac{z+x}{2y}+\frac{x+y}{2z}\geq 3$
Thật vậy:

Áp dụng BĐT Cô-si:

 \(\frac{y+z}{2x}+\frac{z+x}{2y}+\frac{x+y}{2z}\geq 3\sqrt[3]{\frac{(x+y)(y+z)(x+z)}{8xyz}}\geq 3\sqrt[3]{\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{xz}}{8xyz}}=3\)

Ta có đpcm

Dấu "=" xảy ra khi $x=y=z$ hay $a=b=c$

ariesgirl
7 tháng 12 2021 lúc 22:24

bạn cx z luôn nha Akai Haruma

Khách vãng lai đã xóa
nguyễn văn nhật nam
Xem chi tiết
dangquanganhtuan
Xem chi tiết
Trần Lệ Quyên
1 tháng 5 2015 lúc 15:58

tam giác đều b nhé

vì: 2a2+2b2+2c2=2ab+2ac+2bc

(a2+b2-2ab)+(a2+c2-2ac)+(b2+c2+2bc)=0

(a-b)2+(a-c)2+(b-c)2=0

a-b=0;a-c=0;b-c=0

=>a=b;a=c;b=c

vì a,b,c là 3 cạnh tam giác => a=b=c => tam giác đó là tam giác đều

Phan Ngọc Truyền
Xem chi tiết
TRẦN ĐĂNG KHOA
Xem chi tiết