tim gia tri nho nhat cua A= x^2-x
Tim gia tri cua x de bieu thuc A=|x-3|+(-100)co gia tri nho nhat ,tim gia tri nho nhat ay
Vì |x-3| luôn lớn bằng 0 với mọi x
=> |x - 3| + (-100) luôn lớn bằng -100 với mọi x
=> A luôn lớn bằng 100
Dấu "=" xảy ra <=> |x-3| = 0
=> x - 3 = 0
=> x = 3
Vậy Min A = -100 <=> x = 3
Ta có |x - 3| > 0
=> |x - 3| + (-100) > - 100
hay A > 100
Vậy GTNN của A là 100 <=> |x - 3| = 0 <=> x - 3 = 0 <=> x = 3
tim gia tri nho nhat cua bieu thuc tim gia tri nho nhat cua bieu thuc x^4-4x^3+12x^2-16x+16
tim gia tri lon nhat hjoac nho nhat cua/x-1/ +/x-2/=A
tim gia tri nho nhat cua B=|x +2015|+2016
tim gia tri lon nhat cua C=1982-|x-6|
B=|x+2015|+2016
Ta có |x+2015|>hoặc=0 với mọi x
=>B>hoặc=2016
Vậy min B=2016 khi x=2015
C=1982-|x-6|
Ta có -|x-6|<hoặc=0
=>C>hoặc=1982
Vậy max B=1982 khi x=6
tim gia tri nho nhat cua A = |x+5| +2-x
Ta có:
\(\left|x+5\right|\ge x+5\)
\(\Leftrightarrow\left|x+5\right|+2-x\ge x+5+2-x\)
\(\Leftrightarrow\left|x+5\right|+2-x\ge7\)
\(\Leftrightarrow A\ge7\)
Vậy \(MinA=7\) đạt được khi \(x+5\ge0\Leftrightarrow x\ge-5\)
Tim gia tri lon nhat va gia tri nho nhat cua bieu thuc sau: A=\(\frac{x+1}{x^2+x+1}\)
GTLN :
\(A=\frac{x+1}{x^2+x+1}=\frac{\left(x^2+x+1\right)-x^2}{x^2+x+1}=1-\frac{x^2}{x^2+x+1}\)
Vì \(\frac{x^2}{x^2+x+1}=\frac{x^2}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}\ge0\forall x\) nên \(A=1-\frac{x^2}{x^2+x+1}\le1\forall x\) có GTLN là 1
GTNN :
\(A=\frac{x+1}{x^2+x+1}=\frac{-\frac{1}{3}x^2-\frac{1}{3}x-\frac{1}{3}+\frac{1}{3}x^2+\frac{4}{3}x+\frac{4}{3}}{x^2+x+1}=\frac{-\frac{1}{3}\left(x^2+x+1\right)+\frac{1}{3}\left(x+2\right)^2}{x^2+x+1}\)
\(=-\frac{1}{3}+\frac{\frac{1}{3}\left(x+2\right)^2}{x^2+x+1}=-\frac{1}{3}+\frac{\left(x+2\right)^2}{3\left(x^2+x+1\right)}\ge-\frac{1}{3}\) có GTNN là \(-\frac{1}{3}\)
Tim gia tri nho nhat cua A =gia tri tuyet doi cua X-2006 + gi tri tuyet doi cua 2007 -X
\(A=|x-2006|+|2007-x|\ge|x-2006+2007-x|=1\)
Dấu "=" xảy ra khi: \(\left(x-2006\right)\left(2007-x\right)\ge0\Rightarrow\left(x-2006\right)\left(x-2007\right)\le0\)
Mà \(x-2006>x-2007\Rightarrow\hept{\begin{cases}x-2006\ge0\\x-2007\le0\end{cases}\Rightarrow2006\le x\le2007}\)
Vậy GTNN của A là 1 khi \(2006\le x\le2007\)
Chúc bạn học tốt.
tim gia tri lon nhat cua A=2018-/x-7/-/y+2/
tim gia tri nho nhat cua B /x-500/+/x-300/
tim n thuoc Z,biet: a,3.n+2 chia het cho n-1; b, n^2 +5 chia het cho n+1
\(A=2018-\left|x-7\right|-\left|y+2\right|\)
Ta có: \(\hept{\begin{cases}\left|x-7\right|\ge0\forall x\\\left|y+2\right|\ge0\forall y\end{cases}}\Rightarrow2018-\left|x-7\right|-\left|y+2\right|\le2018\)
\(A=2018\Leftrightarrow\hept{\begin{cases}\left|x-7\right|=0\\\left|y+2\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=7\\y=-2\end{cases}}}\)
Vậy \(A_{m\text{ax}}=2018\Leftrightarrow\hept{\begin{cases}x=7\\y=-2\end{cases}}\)
Tham khảo~
Tim gia tri nho nhat cua bieu thuc: P=|x|+7
(x€Z)
Tim gia tri lon nhat cua bieu thuc :Q=9-|x|
1) Ta có: P = |x| + 7 > hoặc = 7
Dấu "=" xảy ra khi và chỉ khi x = 0
Vậy Min P = 7 khi và chỉ khi x = 0
2) Ta có: Q = 9 - |x| < hoặc = 9
Dấu "=" xảy ra khi và chỉ khi x = 0
Vậy Max Q = 9 khi và chỉ khi x = 0
a)Ta có:\(\left|x\right|\ge0\Rightarrow P=\left|x\right|+7\)\(\ge7\)
Đẳng thức xảy ra khi: |x| = 0 => x = 0
Vậy giá trị nhỏ nhất của p là 7 khi x = 0
b) Ta có: \(\left|x\right|\ge0\Rightarrow-\left|x\right|\le0\Rightarrow Q=9-\left|x\right|=9+\left(-\left|x\right|\right)\le9\)
Đẳng thức xảy ra khi: -|x| = 0 => x = 0
Vậy giá trị lớn nhất của Q là 9 khi x = 0
1﴿ Ta có: P = |x| + 7 > hoặc = 7
Dấu "=" xảy ra khi và chỉ khi x = 0
Vậy Min P = 7 khi và chỉ khi x = 0
2﴿ Ta có: Q = 9 ‐ |x| < hoặc = 9
Dấu "=" xảy ra khi và chỉ khi x = 0
Vậy Max Q = 9 khi và chỉ khi x = 0
k nha bị âm r