Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nắng Hạ
Xem chi tiết
Nắng Hạ
25 tháng 6 2018 lúc 16:41

À mình nghĩ đề sai r, xin lỗi nha, mn ko cần làm nữa đâu ....

Nguyễn Mai Hương
9 tháng 9 2018 lúc 8:51

vt mỗi cái đề cho người khác lm

haazzzzzzzzzzzzzzz

chi kute

Trung Hoàng
Xem chi tiết
Trí Tiên亗
25 tháng 2 2020 lúc 16:40

Bài này bạn chỉ cần chuyển vế biến đổi thôi là được , mình làm mẫu câu 2) :

\(\frac{a^2}{m}+\frac{b^2}{n}\ge\frac{\left(a+b\right)^2}{m+n}\)

\(\Leftrightarrow\frac{a^2n+b^2m}{mn}-\frac{\left(a+b\right)^2}{m+n}\ge0\)

\(\Leftrightarrow\frac{\left(m+n\right)\left(a^2n+b^2m\right)-\left(a^2+2ab+b^2\right).mn}{mn\left(m+n\right)}\ge0\)

\(\Leftrightarrow\frac{a^2mn+\left(bm\right)^2+\left(an\right)^2+b^2mn-a^2mn-2abmn-b^2mn}{mn\left(m+n\right)}\ge0\)

\(\Leftrightarrow\frac{\left(bm-an\right)^2}{mn\left(m+n\right)}\ge0\) ( luôn đúng )

Dấu "=" xảy ra \(\Leftrightarrow bm=an\)

Câu 3) áp dụng câu 2) để chứng minh dễ dàng hơn, ghép cặp 2 .

Khách vãng lai đã xóa
Đặng Minh ĐỨC
Xem chi tiết
Akai Haruma
5 tháng 2 2017 lúc 10:17

Lời giải:

Áp dụng bất đẳng thức Cauchy-Schwarz:

\(\text{VT}=\frac{a^4}{a^2b}+\frac{b^4}{b^2c}+\frac{c^4}{c^2a}\geq \frac{(a^2+b^2+c^2)^2}{a^2b+b^2c+c^2a}\) $(1)$

Vì $a+b+c=1$ nên

\(a^2+b^2+c^2=(a+b+c)(a^2+b^2+c^2)=(a^3+ab^2+b^3+bc^2+c^3+ca^2)+(a^2b+b^2c+c^2a)\)

Áp dụng AM-GM:

\(a^3+ab^2\geq 2a^2b\). Tương tự cho $2$ cặp còn lại suy ra:

\(a^3+b^3+c^3+ab^2+bc^2+ca^2\geq 2(a^2b+b^2c+c^2a)\)

\(\Rightarrow a^2+b^2+c^2\geq 3(a^2b+b^2c+c^2a)\) $(2)$

Từ \((1),(2)\Rightarrow \text{VT}\geq 3(a^2+b^2+c^2)\) (đpcm)

Dấu bằng xảy ra khi $a=b=c=\frac{1}{3}$

Nguyễn tuấn nghĩa
Xem chi tiết
Không Tên
30 tháng 3 2018 lúc 21:47

c)          \(\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\)

\(\Leftrightarrow\)\(\left(ax\right)^2+2axby+\left(by\right)^2\le\left(ax\right)^2+\left(ay\right)^2+\left(bx\right)^2+\left(by\right)^2\)

\(\Leftrightarrow\)\(2axby\le\left(ay\right)^2+\left(bx\right)^2\)

\(\Leftrightarrow\)\(\left(ay\right)^2-2axby+\left(bx\right)^2\ge0\)

\(\Leftrightarrow\)\(\left(ay-bx\right)^2\ge0\)  luôn đúng

Dấu "=" xảy ra  \(\Leftrightarrow\)\(\frac{a}{x}=\frac{b}{y}\)

Phúc
3 tháng 4 2018 lúc 18:14

a) cứ tach theo kieu a^2-2a+1 =(a-1)^2 >0 la ra

b)nhân 2 lên rồi trừ đi ghép hằng đẳng thức giống câu a la ra

d) dung bdt a^3+b^3>=a^2b+ab^2

Tư Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 1 2022 lúc 23:00

1: \(\Leftrightarrow a^5-a^4b+b^5-ab^4>=0\)

\(\Leftrightarrow a^4\left(a-b\right)-b^4\left(a-b\right)>=0\)

\(\Leftrightarrow\left(a-b\right)^2\cdot\left(a+b\right)\cdot\left(a^2+b^2\right)>=0\)(luôn đúng khi a,b dương)

khoa le nho
Xem chi tiết
khoa le nho
15 tháng 3 2020 lúc 11:05

Giúp mình 

Khách vãng lai đã xóa
Phùng Gia Bảo
15 tháng 3 2020 lúc 21:43

Không mất tính tổng quát giả sử \(a\ge b\ge c\). Khi đó, ta dễ dàng có được \(a^n\ge b^n\ge c^n\)và \(\frac{1}{b+c}\ge\frac{1}{c+a}\ge\frac{1}{a+b}\)

Áp dụng bất đẳng thức Chebyshev, ta có: \(\frac{a^n}{b+c}+\frac{b^n}{c+a}+\frac{c^n}{a+b}\ge\frac{1}{3}\left(a^n+b^n+c^n\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)

P/s: Đây là một bước nhỏ trong một cách chứng minh dạng tổng quát của bđt Nesbit

Khách vãng lai đã xóa
khoa le nho
16 tháng 3 2020 lúc 10:26

ủa trebyshev có dạng như vậy hả bạn 

Khách vãng lai đã xóa
Nguyễn Nam
Xem chi tiết
Nguyen Van Huong
27 tháng 4 2017 lúc 19:50

e)\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(=1+\frac{b}{a}+\frac{a}{b}+1\)

\(=\left(1+1\right)+\left(\frac{a}{b}+\frac{b}{a}\right)\)

\(=2+\left(\frac{a.a}{b.a}+\frac{b.b}{a.b}\right)\)

\(=2+\frac{a.a+b.b}{b.a}\)

\(\frac{a.a+b.b}{a.b}>=2\) 

Nên \(2+\frac{a.a+b.b}{a.b}>=2+2=4\)

Hay \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)>=4\)

Nguyen Van Huong
27 tháng 4 2017 lúc 19:40

a) \(a^2+b^2-2ab\)

\(=\left(a-b\right)^2\)

\(\left(a-b\right)^2\) là binh phương của một số nên \(\left(a-b\right)^2>=0\)

Hay \(a^2+b^2-2ab>=0\)

Nguyen Van Huong
27 tháng 4 2017 lúc 19:44

c) \(a\left(a+2\right)\)

\(=a^2+2a\)

\(\left(a+1\right)^2\)

\(=\left(a+1\right)\left(a+1\right)\)

\(=a^2+a+a+1\) 

\(=a^2+2a+1\)

\(a^2+2a< a^2+2a+1\)

Nên \(a\left(a+2\right)< \left(a+1\right)^2\)

Tâm Di
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
Xem chi tiết