\(B=\frac{48^3\cdot50^5}{64^2\cdot125^2\cdot30^3}\)
CMR: \(\frac{3}{1^2\cdot2^2}+\frac{5}{2^2\cdot3^2}+\frac{7}{3^2\cdot4^2}+...+\frac{97}{48^2\cdot49^2}+\frac{99}{49^2\cdot50^2}< 1\)
\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{97}{48^2.49^2}+\frac{99}{49^2.50^2}\)
\(\Leftrightarrow\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{97}{2304.2401}+\frac{99}{2401.2500}\)
\(\Leftrightarrow\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+...+\frac{1}{2304}-\frac{1}{2401}+\frac{1}{2401}-\frac{1}{2500}\)
\(\Leftrightarrow\frac{1}{1}-\frac{1}{2500}=\frac{2499}{2500}< 1\left(đpcm\right)\)
\(\frac{3}{10\cdot12}+\frac{3}{12\cdot14}+........+\frac{3}{48\cdot50}\)
3/2.( 2/ 10.12+2/12.14+.....+2/48.50)
3/2.(1/10-1/12+1/12-1/14+....+1/48-1/50)
3/2.(1/10-1/50)
3/2.2/25
3/25
tinh:\(\frac{3}{10\cdot12}+\frac{3}{12\cdot14}+...+\frac{3}{48\cdot50}\)
\(\frac{3}{25}\)nha
Đúng 100%
Đúng 100%
Đúng 100%
Bài này mình chắc 100%, 1 đúng nha vì ghi cực khổ lắm:
1) Ta có: \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}...+\frac{50-49}{49.50}\)
\(=\frac{2}{1.2}-\frac{1}{1.2}+\frac{3}{2.3}-\frac{2}{2.3}+...+\frac{50}{49.50}-\frac{49}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}
Tính bằng cách hợp lí :
a, A=\(\dfrac{32\cdot125\cdot25+64\cdot125\cdot0,125}{2+4+6+...+98+100}\)
b, B=\(\dfrac{12\cdot194+6\cdot437\cdot2+3\cdot369\cdot4}{1+5+9+...+57+61+65\cdot2-26}\)
Tính: A=\(\frac{49^{24}\cdot125^{10}\cdot2^8-5^{30}\cdot7^{49}\cdot4^5}{5^{29}\cdot16^2\cdot7^{48}}\)
giá một chiếc xe đạp thường là 900000 đồng nhân dịp ngay lễ cửa hàng giảm giá 10 phần trăm . hỏi cửa hàng đó bán một chiếc xe đạp như thế trong ngày lễ là bao nhiêu tiền
\(A=\frac{49^{24}.125^{10}.2^8-5^{30}.7^{49}.4^5}{5^{29}.16^2.7^{48}}\)
\(A=\frac{\left(7^2\right)^{24}.\left(5^3\right)^{10}.2^8-5^{30}.7^{49}.\left(2^2\right)^5}{5^{29}.\left(2^4\right)^2.7^{48}}\)
\(A=\frac{7^{48}.5^{30}.2^8-5^{30}.7^{49}.2^{10}}{5^{29}.2^8.7^{48}}\)
\(A=\frac{7^{48}.5^{30}.2^8.\left(1-7.2^2\right)}{5^{29}.2^8.7^{48}}\)
\(A=\frac{5.\left(-27\right)}{1}=-135\)
Tính nhanh :
\(a,\left(16\cdot23+16\cdot77\right)-\left(5\cdot30-5\cdot20\right)\)
\(b,8\frac{1}{2}:\frac{17}{5}+\frac{6}{8}:3\frac{2}{3}\)
\(a,\left(16.23+16.77\right)-\left(5.30-5.20\right)\)
\(=16.\left(23+77\right)-5.\left(30-20\right)\)
\(=16.100-5.10\)
\(=1600-50\)
\(=1550\)
\(b,8\frac{1}{2}\div\frac{17}{5}+\frac{6}{8}\div3\frac{2}{3}\)
\(=\frac{17}{2}.\frac{5}{17}+\frac{3}{4}\div\frac{11}{3}\)
\(=\frac{17}{2}.\frac{5}{17}+\frac{3}{4}.\frac{3}{11}\)
\(=\frac{5}{2}+\frac{9}{44}\)
\(=\frac{110}{44}+\frac{9}{44}\)
\(=\frac{119}{44}\)
\(a,=16.100-5.10=1600-50=1550\)
\(b,8\frac{1}{2}:\frac{17}{5}+\frac{6}{8}:3\frac{2}{3}=\frac{17}{2}.\frac{5}{17}+\frac{6}{8}:\frac{11}{3}=\frac{5}{2}+\frac{18}{88}=\frac{220}{88}+\frac{18}{88}=\frac{238}{88}=2\frac{31}{44}\)
\(a,\left(16\cdot23+16\cdot77\right)-\left(5\cdot30-5\cdot20\right)\)\(=16.\left(23+77\right)-5\left(30+20\right)\)
\(=16.100-5.50\)
\(=1600-250=1350\)
\(b,8\frac{1}{2}:\frac{17}{5}+\frac{6}{8}:3\frac{2}{3}=\frac{17}{2}.\frac{5}{17}+\frac{3}{4}.\frac{11}{3}\)
\(=\frac{5}{2}+\frac{11}{4}\)
\(=\frac{21}{4}\)
A =\(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+.........+\frac{1}{48\cdot49\cdot50}\)
Vậy A =........
Ths các pạn trc na!!!!!
ta thấy 1/(1*2)-1/(2*3)=1/3=2*1/(1*2*3)
do đó A=1/2*{[1/(1*2)-1/(2*3)+[1/(2*3)-1/(3*4)]+.....+[1/(48*49)-1/(49*50)]}
=1/2*[1/(1*2)-1/(2*3)+1/(2*3)-1/(3*4)+.....+1/(48*49)-1/(49*50)]
=1/2*[1/(1*2)-1/(49*50)]
=1/2*(1/2-1/2450)
=1/2*612/1225
=306/1225
cho A =\(\frac{1}{1\cdot101}+\frac{1}{2\cdot102}+\frac{1}{3\cdot103}+....+\frac{1}{25\cdot125}\)
B = \(\frac{1}{1\cdot26}+\frac{1}{2\cdot27}+\frac{1}{3\cdot28}+...+\frac{1}{100\cdot125}\)
Trong đó A có 25 số hạng , B có 100 số hạng . tính A:B