Cho A=n+1/n-2 (n thuộc Z)
tìm n thuộc Z để A thuộc Z
cho A= 3/ n-2 ; n thuộc Z. Tìm n để A thuộc Z
Cho b= n/n+1 ; n thuộc Z. Tìm n để B thuộc Z
A nguyên <=> 3 ⋮ n - 2
=> n - 2 thuộc Ư(3)
=> n - 2 thuộc {-1;1;-3;3}
=> n thuộc {1;3;-1;5}
B nguyên <=> n ⋮ n + 1
=> n + 1 - 1 ⋮ n + 1
=> 1 ⋮ n + 1
=> như a
ĐK : \(n\ne2\)
\(A=\frac{3}{n-2}\Rightarrow n-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
n - 2 | 1 | -1 | 3 | -3 |
n | 3 | 1 | 5 | -1 |
ĐK : \(n\ne-1\)
\(B=\frac{n}{n+1}=\frac{n+1-1}{n+1}=1-\frac{1}{n+1}\)
\(\Rightarrow n+1\inƯ\left(1\right)=\left\{\pm1\right\}\)
n + 1 | 1 | -1 |
n | 0 | -2 |
cho biểu thức A=n+1/n-2(n thuộc Z)
a)tìm n để A là phân số
b)tìm n thuộc Z để A thuộc Z
c)tìm n thuộc Z để A có giá trị lớn nhất
A=(n-2)/(n+3)= (n-3+5)/(n-3)= 1+ 5/(n-3)
Để biểu thức A lớn nhất thì 1+ 5/(n-3) LN. Mà 1>0; 1 ko đổi => 5/(n-3) LN. 5>0; 5 ko đổi=> n-3 nhỏ nhất, n-3>0. Mà n thuộc Z nên n-3 thuộc Z=> n-3=1 => n=4
Khi đó A =4+2/4-3= 6/1=6
cho biểu thức A=n+1/n-2(n thuộc Z)
a)tìm n để A là phân số
b)tìm n thuộc Z để A thuộc Z
c)tìm n thuộc Z để A có giá trị lớn nhất
bn phải ghi cách lm ra lun chứ ko là thầy mik cx cho 0 lun
p/s: cái này ko liên quan đến bài
cho a=n+1/n-2
a)tìm n thuộc z để a thuộc z
b)tìm n thuộc z để a có GTLN
Ta có : \(\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=1+\frac{3}{n-2}\)
a) Ta có 1 là số nguyên, để \(\frac{3}{n-2}\) là số nguyên thì 3 chia hết cho n - 2.
<=> n - 2 thuộc Ư(3) = {1;2;-1;-2}
=> n thuộc {3;4;1;0}
b) Để A lớn nhất thì n - 2 = 1 (nếu không có 1 thì những số lớn hơn 1)
=> n - 2 = 1
=> n = 3
Vậy GTLN của n = 3
a) A=\(\frac{n+1}{n-2}=1+\frac{3}{n-2}\)
muốn A nguyên thì n-3=Ư(3)={-1,-3,1,3}
n-2=-1=> n=1
n-2=1=> n=3
n-2=-3=> n=-1
n-2=3=> n=5
=> kl cvos 4 gtri n thỏa:....
b) A=1+\(\frac{3}{n-2}\)
=> muốn A lớn nhất thì \(\frac{3}{n-2}\)lớn nhất
có : \(\frac{3}{n-2}>=3\) khi n nguyên
=> dấu = dảy ra khi n=3
vậy GTLN A=1+3=4 khi x=3
a) Ta có: \(\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=\frac{n-2}{n-2}+\frac{3}{n-2}=1+\frac{3}{n-2}\)
Để A là số nguyên thì 3 phải chia hết cho n - 2
=> n - 2 thuộc Ư(3) = { 1 ; 3 ; - 1 ; - 3 }
=> n thuộc { 3 ; 5 ; 1 ; - 1 }
Vậy n thuộc { 3 ; 5 ; 1 ; - 1 }
Bài 1: Cho A = n+10/2n+8
a) TÌm n thuộc Z để A là phân số
b) Tìm n thuộc Z để A thuộc Z
Bài 2: TÌm n thuộc Z để 2n+3/4n+1 là phân số tối giản
cho A= n+1 / n-2
a, tìm n thuộc z để A thuộc z
b , tìm n thuộc z để A lớn nhât
cho B = 5/12 nhân -24 / 2x -1 + 16 nhân 3/ 4x -2
a. rút gọn B
b. tìm x thuộc z để B lớn nhất
c tìm x thuộc z để B thuộc z
a) Để A và n thuộc Z => n+1 chia hết cho n-2
A=(n-2+3) chia hết cho n-2
=> 3 chia hết cho n-2
lập bảng=> n thuộc {3,1,5,9,(-1)}
b) A lớn nhất khi n-2 nhỏ nhất=> n-2=1
=> n=3
Nhớ tk cho mk nha!
Cho A=\(\frac{n+1}{n-2}\)
a/ Tìm n thuộc Z để A thuộc Z
b/Tìm n thuộc Z để A có GTLN.
\(A=\frac{n+1}{n-2}\\ Athu\text{ộc}Zkhin+1⋮n-2\\ =>n-2+3⋮n-2\\ =>3⋮n-2\)
=>n-2 thuộc Ư(3)={1;3;-1;-3}
=>n thuoc {3;5;1;-1}
b) A có GTLN khi n lớn nhất =>n=5
Câu b không chắc chắn
Cho \(A=\frac{n+1}{n-2}\)
a, Tìm n thuộc Z để A thuộc Z
b, Tìm n thuộc Z để A đạt GTLN
c, Tìm n thuộc Z để A đạt GTNN
a)
Để A thuộc Z thì ( dấu " : " là chia hết cho )
n + 1 : n - 2
n - 2 + 3 : n - 2
=> 3 : n - 2 => n - 2 thuộc Ư(3) = { 1; 3; -1; -3 }
Sau đó tìm n là xong
b) Cũng gần tương tự như phần a !
\(A=\frac{n+1}{n-2}=1+\frac{3}{n-2}\)
Để A nhỏ nhất thì \(\frac{3}{n-3}\)nhỏ nhất
mà n nguyên ( theo đề bài )
=> 3 : n - 3
Ta có bảng :
n - 3 | 1 | -1 | 3 | -3 |
n | 4 | 2 | 6 | 0 |
Lần lượt thay n vào A thì ta thấy A nhỏ nhất <=> n = 0
a) \(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=1+\frac{3}{n-2}\)
Để \(A\in Z\Leftrightarrow3⋮\left(n-2\right)\)
\(\Leftrightarrow n-2\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
Nêu n-2=1 thì n=3
Nếu n-2=-1 thì n=1
Nếu n-2=3 thì n=5
Nếu n-2=-3 thì n = -1
Vậy....
b) Để A đạt GTLN thì \(\frac{3}{x-2}\) đạt giá trị dương lớn nhất
=> x - 2 đạt giá trị dương nhỏ nhất
=> x - 2 = 1 => x = 3
1: Cho A = \(\frac{n+3}{n+1}\) tìm n thuộc Z để A thuộc Z
2: Cho b = \(\frac{3n-5}{n-4}\)tìm n thuộc Z để B thuộc Z
A=n+3 chia hết cho n+1
mà n+3 =(n+1)+2
vì n+1 chia hết cho n+1
nên A chia hết cho n+1
khi2chia hết cho n+1
suy ra n+1 thuộc ước của 2
suy ra n+1 thuộc {1;2}
mà n thuộc Z Suy ra n thuộc { 0;1}
Câu 2 dựa theo cách trên mà tự làm
\(\frac{n+3}{n+1}=\frac{n+1+2}{n+1}=\frac{n+1}{n+1}+\frac{2}{n+1}=1+\frac{2}{n+1}\)
Để \(A\in Z\)<=> n + 1 \(\in\)Ư(2) = {-1;1;-2;2}
n + 1 | -1 | 1 | -2 | 2 |
n | -2 | 0 | -3 | 1 |
\(\frac{3n-5}{n-4}=\frac{3n-12-17}{n-4}=\frac{3\left(n-4\right)-17}{n-1}=\frac{3\left(n-4\right)}{n-4}-\frac{17}{n-4}\)
Để \(B\in Z\) <=> n - 4 \(\in\)Ư(17) = {1;-1;17;-17}
n - 4 | 1 | -1 | 17 | -17 |
n | 5 | 3 | 21 | -13 |