cho tam giác ABC nội tiếp đường tròn tâm O bán kính R có AB=\(R\sqrt{3}\) Và Cung CA = Cung CB . M là điểm bất kỳ trên cung nhỏ AB .
a) CM : MA+MB=MC
b) Tìm vị trí nhỏ nhất của M trên cung nhỏ BC để MA+MB là lớn nhất
cho tam giác đều abc nội tiếp đường tròn tâm o, bán kính R. Từ một điểm M nằm trên cung nhỏ BC của đường tròn (O) kẻ MH, MI, MK lần lượt vuông góc với các đường thẳng AB, BC, CA. Xác định vị trí điểm M sao cho tổng d = MA + MB + MC + MH + MI + MK đạt gtln
Cho tam giác ABC đều nội tiếp đường tròn (O;R). M là điểm trên cung nhỏ BC, trên tia MA lấy I sao cho MB=MI. Xác định vị trí M để MB+MC lớn nhất
Cho tam giác đều ABC nội tiếp đường tròn tâm O . M là điểm di chuyển trên cung nhỏ BC . Trên đoạn thẳng AM lấy điểm D sao cho MD = MB
a ) Khi M di chuyển trên cung nhỏ BC thì điểm D di chuyển trên đường nào?
b ) Xác định vị trí của M trên cung nhỏ BC để MA + MB + MC lớn nhất.
Xét \(\Delta MBD\)cân tại M có :
\(\widehat{BDM}=60^0\)
\(\Rightarrow\Delta MBD\)là tam giác đều
\(\Rightarrow\widehat{BDM}=60^0\)
\(\Rightarrow\widehat{BDA}=120^0\)
\(\Rightarrow\)Khi M di chuyển trên cung nhỏ BC thì M di chuyển trên cung tròn ( nằm trên nửa mặt phẳng bờ AB chưa điểm M ) nhìn AB một góc bằng \(120^0\)
Xét \(\Delta DBA\)và \(\Delta MBC\)có :
\(BA=BC\)( vì tam giác ABC đều )
\(\widehat{BAD}=\widehat{BCM}\)( cùng chắn cung BM )
\(\widehat{ABD}=\widehat{CBM}\left(=60^0-\widehat{DBC}\right)\)
Suy ra \(\Delta DBA=\Delta MBC\)
\(\Rightarrow MC=DA\)
\(\Rightarrow MA+MB+MC=MA+MD+DA=2MA\)
\(MA+MB+MC\)lớn nhất khi MA lớn nhất
\(\Rightarrow AM\)là đường kính của \(\left(O\right)\)
\(\Rightarrow M\)là điểm chính giữa của cung BC
Chúc bạn học tốt !!!
Từ một điểm $A$ nằm ngoài đường tròn tâm $O$ bán kính $R$, kẻ các tiếp tuyến $AB$, $AC$ với đường tròn ($B$, $C$ là tiếp điểm). Trên cung nhỏ $BC$ lấy một điểm $M$ bất kỳ khác $B$ và $C$. Gọi $I$, $K$, $P$ lần lượt là hình chiếu vuông góc của điểm $M$ trên các đường thẳng $AB$, $AC$, $BC$.
1. Chứng minh rằng $AIMK$ là tứ giác nội tiếp.
2. Chứng minh $\widehat{MPK} = \widehat{MBC}$.
3. Xác định vị trí điểm $M$ trên cung nhỏ $BC$ để tích $MI .MK .MP$ đạt giá trị lớn nhất.
tứ giác AIMK có
góc AIM = góc AKM = 90 độ
suy ra AIMK là tứ giác nội tiếp
Cho đường tròn (O;R) có 2 đường kính AB và CD vuông góc với nhau. Từ điểm M bất kì trên cung nhỏ BC kẻ MH vuông góc với CB tại H.
1.Gọi I là tâm đường tròn nội tiếp tam giác OMH. Chứng minh \(\widehat{OIB}\) không đổi
2.Tìm vị trí của điểm M sao cho tam giác AMH có diện tích lớn nhất
1.\(\Delta OMH\perp H\) ( không đổi )
\(\Rightarrow\widehat{OMH}+\widehat{HOM}=90^o\)
Ta có: I là tâm đường tròn nội tiếp \(\Delta OMH\)
\(\Rightarrow\widehat{OMI}=\widehat{HMI}=\dfrac{\widehat{OMH}}{2}\)
\(\Rightarrow\widehat{MOI}=\widehat{HOI}=\dfrac{\widehat{MOH}}{2}\)
\(\Delta OIM\) có: \(\widehat{OIM}=180^o-\left(\widehat{OMI}+\widehat{MOI}\right)\)
\(\Leftrightarrow\) \(\widehat{OIM}=180^o-\left(\dfrac{\widehat{OMH}}{2}+\dfrac{\widehat{MOH}}{2}\right)\)
\(\Leftrightarrow\widehat{OIM}=180^o-\dfrac{90^o}{2}=135^o\)
Xét \(\Delta OIB\) và \(\Delta OIM\), có:
\(OB=OM\left(=R\right)\)
\(\widehat{MOI}=\widehat{BOI}\) ( OI là tia phân giác \(\widehat{MOH}\) )
`OI`: chung
Vậy\(\Delta OIB\) = \(\Delta OIM\) ( c.g.c )
\(\Rightarrow\widehat{OIB}=\widehat{OIM}\) ( 2 góc tương ứng )
\(\Rightarrow\widehat{OIB}=135^o\) ( không đổi )
2. \(\Delta OMH\perp H\)
\(\Rightarrow S_{OMH}=\dfrac{1}{2}.OH.MH\)
Áp dụng BĐT AM-GM, ta có:
\(\sqrt{OH^2.MH^2}\le\dfrac{OH^2+MH^2}{2}\)
\(\Leftrightarrow\dfrac{1}{2}.OH.MH\le\dfrac{1}{2}.\dfrac{OH^2+MH^2}{2}\)
\(\Leftrightarrow\dfrac{1}{2}.OH.MH\le\dfrac{1}{2}.\dfrac{OM^2}{4}\) ( pytago )
\(\Leftrightarrow S_{OMH}\le\dfrac{R^2}{4}\)
\(\rightarrow\)\(S_{OMH}\) lớn nhất là \(\dfrac{R^2}{4}\) không đổi
Dấu "=" xảy ra khi:
\(OH^2=MH^2\)
\(\Rightarrow OH=MH\)
\(\Rightarrow\Delta OMH\) vuông cân tại `H` \(\Rightarrow\widehat{MOH}=\widehat{OMH}=45^o=\widehat{MOC}\)
\(\Rightarrow\)`M` nằm giữa của \(\stackrel\frown{AB}\) thì \(S_{OMH}\) đạt GTNN là \(\dfrac{R^2}{4}\)
eyy bài không biết đăng lên đây hẽ?:"))
Cho đường tròn tâm O bán kính R. Dây cung AB cố định bằng căn 3 R, M di động trên cung lớn AB. Đường tròn tâm I nội tiếp tam giác ABM, tiếp xúc với MA,MB lần lượt tại E và F. CM tg MEIF nội tiếp
Cho tam giác ABC cân tại A nội tiếp (O,R). M là điểm di động trên cung nhỏ BC . D là giao điểm của AM và BC.
a, Chứng minh tam giác MBD đồng dạng với tam giác MAC
b, (MB+MC)/MA=BC/AB
c, Xác định vị trí của M để MA+MB+MC đạt giá trị lớn nhất
a) Xét \(\Delta MBD\)và \(\Delta MAC\)
có: \(\widehat{MAC}=\widehat{MBD}\)( cùng chắn cung MC)
\(\widehat{BMD}=\widehat{AMC}\)( cung AB=cung AC vì AB=AC)
=> \(\Delta MBD\)~ \(\Delta MAC\)
b) Từ câu a)_
=> \(\frac{MB}{MA}=\frac{BD}{AC}\)(1)
\(\frac{MC}{MA}=\frac{MD}{MB}\)(2)
Dễ dàng chứng minh đc:
\(\Delta BDM~\Delta ADC\)
=> \(\frac{MD}{MB}=\frac{DC}{AC}\)(3)
Từ (1), (2), (3)
=> \(\frac{MB}{MA}+\frac{MC}{MA}=\frac{BD}{AC}+\frac{CD}{AC}=\frac{BC}{AC}\)\(=\frac{BC}{AB}\)
c) Lấy điểm E thuộc đoạn
Cho đường tròn (O; R) có đường kính AB. Bán kính CO vuông góc với AB, M là một điểm bất kỳ trên cung nhỏ AC (M thuộc cung A, C); BM cắt AC tại H. Gọi K là hình chiếu của H trên AB.
1) Chứng minh CBKH là tứ giác nội tiếp.
2) CA là tia phân giác của ^MCK
1: góc ACB=1/2*180=90 độ
góc HKB+góc HCB=180 độ
=>CBKH nội tiếp
2: góc MCA=1/2*sđ cung MA
góc ACK=góc MBA=1/2*sđ cung MA
=>góc MCA=góc KCA
=>CA là phân giác của góc MCK
Cho (O;R) với dây AB cố định sao cho khoảng cách từ O tới AB bằng R/2. Gọi H là trung điểm của AB, tia HO cắt đường tròn (O;R) tại C. Trên cung nhỏ AB lấy điểm M tùy ý (M khác A, B). Đường thẳng qua A và song song với MB cắt CM tại I. Dây Cm cắt Ab tại K
1. So sánh góc AIM vs góc ACB
2. cm 1/MA + 1/MB = 1/MK
3. Gọi R1 R2 lần lượt là bán kính đường tròn ngoại tiếp tam giác MAK và tam giác MBK, hãy xác định vị trí của điểm M trên cung nhỏ Ab để thích R1xR2 đạt giá trị lớn nhất