So sánh hai lũy thừa : 2^102 với 5^45
So sánh hai lũy thừa sau : 2 mũ 102 và 5 mũ 45
Giải chi tiết giúp mk nha
So sánh : 201^60 và 398^45
(bằng phương pháp so sánh lũy thừa trung gian)
\(201^{60}=\left(201^4\right)^{15}=1944810000^{15}\)
\(398^{45}=\left(398^3\right)^{15}=63044792^{15}\)
Do \(1944810000>63044792\)
\(\Rightarrow1944810000^{15}>63044792^{15}\)
\(\Rightarrow201^{60}>398^{45}\)
Ta có:
\(201^{60}>200^{60};398^{45}< 400^{45}\)
\(200^{60}=\left(2.100\right)^{60}=2^{60}.100^{60}=2^{60}.\left(10^2\right)^{60}\)
\(=2^{60}.10^{120}=2^{60}.10^{30}.10^{90}\)
\(400^{45}=\left(2.100\right)^{45}=2^{45}.100^{45}=2^{45}.\left(10^2\right)^{45}\)
\(=2^{45}.10^{90}\)
Mà \(2^{60}.10^{30}.10^{90}>2^{45}.10^{90}\)
\(\Rightarrow200^{60}>400^{45}\)
\(\Rightarrow201^{60}>200^{60}>400^{45}>398^{45}\)
\(\Rightarrow201^{60}>398^{45}\)
`#3107`
\(201^{60}\text{ và }398^{45}\)
Ta có:
\(201^{60}=\left(201\right)^{15\cdot4}=\left(201^4\right)^{15}=1632240801^{15}\)
\(398^{45}=\left(398\right)^{15\cdot3}=\left(398^3\right)^{15}=63044792^{15}\)
Vì `63044792 < 1632240801 \Rightarrow`\(1632240801^{15}< 63044792^{15}\)
\(\Rightarrow201^{60}>398^{45}\)
Vậy, \(201^{60}>398^{45}.\)
So Sánh 2 lũy thừa:(Biến đổi thành lũy thừa thì mới so sánh nhé)
8^5 và 3.4^7
\(8^5=\left(2^3\right)^5=2^{15}=2.2^{14}\)
\(3.4^7=3.\left(2^2\right)^7=3.2^{14}\)
Vì 2 < 3 nên 85 < 3 . 47
Câu 1 / so sánh 2 lũy thừa 3^23 và 5^12
Câu 2 / so sánh 2 lũy thừa 3^36 và 2^8.11^4
1.So sánh các lũy thừa sau:
a, 27^81 và 81^27
b, 5^60 và 7^40
c, 99^50 và 11^102
d, 12^34567 và 34567^12
a/
\(27^{81}=\left(3^3\right)^{81}=3^{241}\)
\(81^{27}=\left(3^4\right)^{27}=3^{108}\)
\(\Rightarrow27^{81}=3^{241}>3^{108}=81^{27}\)
b/
\(5^{60}=\left(5^3\right)^{20}=125^{20}\)
\(7^{40}=\left(7^2\right)^{20}=49^{20}\)
\(\Rightarrow5^{60}=125^{20}>49^{20}=7^{40}\)
c/
\(11^{102}=\left(11^2\right)^{51}=121^{51}>121^{50}>99^{50}\)
d. So sánh a=12^34567 với b=(12^5)^12=12^60 => a>b
so sánh b=(12^5)^12 với c=34567^12 => b>c
Vậy a>c.
so sánh b=(12^5)^12=248832^12 với c=34567^12 => b>c
So sánh hai lũy thừa
25n và 52n
\(2^{5n}=\left(2^5\right)^n=32^n\)
\(5^{2n}=\left(5^2\right)^n=25^n\)
\(32^n>25^n\Rightarrow2^{5n}>5^{2n}\)
Vậy ........
Chúc em học tốt^^
ta c0:
\(2^{5n}=\left(2^5\right)^n=32^n\)
\(5^{2n}=\left(5^2\right)^n=25^n\)
vj 32>25\(\Rightarrow32^n>25^n\)
hay \(2^{5n}>5^{2n}\)
Theo bai ra , ta co:
25n=(25)n=10n va 52n=(52)n=10n
Do 10n = 10n =>25n = 52n voi moi n thuoc Z
Tính giá trị của 2x khi x biến đổi từ 0 đến 6 . Từ đó so sánh
a. Lũy thừa bậc 0 với các cơ số dương, sợ sánh với 0
b. Lũy thừa bậc lẻ ( 1,3,5....) với cơ số âm , so sánh với 0
c. Lũy thừa bậc chẵn (2,4,6....) với cơ số âm , so sánh với 0
So sánh lũy thừa với lũy thừa
3^2n và 2^3n
5^23và 6x 5^22
5^36 và 11^24
Mình đang cần gấp
a) 32n với 23n
xét 32n: Xét 23n:
=32.3n = 23.2n
=9.3n = 8.2n
Ta thấy: 9>8,3n>2n
=>32n>23n
a , 3^2n và 2^3n
Ta có : 3^2n = 3^2 . n = 9^n
2^3n = 2^3 . n = 8^n
Mà 9^n > 8^n => 3^2n > 2^3n
c , 5^36 và 11^24
Ta có : 5^36 = 5^3 . 12 = 125^12
11^24 = 11^2 . 12 = 121^12
Mà 125^12 > 121^12 => 5^36 > 11^24
b , 5^23 và 6 . 5^22
Ta có : 5^23 = 5 . 5^22
Mà 6 > 5 => 6 . 5^22 > 5 . 5^22
=> 5^23 < 6 . 5^22
So sánh 2 lũy thừa sau :
2545 và 12530
\(25^{45}=\left(5^2\right)^{45}=5^{90}\)
\(125^{30}=\left(5^3\right)^{30}=5^{90}\)
\(Vay:25^{45}=125^{30}\)
Ta có:
\(25^{45}=\left(5^2\right)^{^{45}}=5^{2\times45}=5^{90}\)
\(125^{30}=\left(5^3\right)^{^{30}}=5^{3\times30}=5^{90}\)
Vì \(5^{90}=5^{90}\) nên \(25^{45}=125^{30}\)
Ta có : 2545 = ( 52 )45 ; 12530 = ( 53 )30
= 590 ; = 590
Vì 590 = 590 nên 2545 = 12530 .