Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Toại
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết
Kiệt Nguyễn
17 tháng 10 2020 lúc 13:22

a) \(ĐK:y-2x+1\ge0;4x+y+5\ge0;x+2y-2\ge0,x\le1\)

Th1: \(\hept{\begin{cases}y-2x+1=0\\3-3x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}0=0\\-1=\sqrt{10}-1\end{cases}}\)(không thỏa mãn)

Th2: \(x,y\ne1\)

\(2x^2-y^2+xy-5x+y+2=\sqrt{y-2x+1}-\sqrt{3-3x}\)\(\Leftrightarrow\left(x+y-2\right)\left(2x-y-1\right)=\frac{x+y-2}{\sqrt{y-2x+1}+\sqrt{3-3x}}\)\(\Leftrightarrow\left(x+y-2\right)\left(\frac{1}{\sqrt{y-2x+1}+\sqrt{3-3x}}+y-2x+1\right)=0\)

Dễ thấy \(\frac{1}{\sqrt{y-2x+1}+\sqrt{3-3x}}+y-2x+1>0\)nên x + y - 2 = 0

Thay y = 2 - x vào phương trình \(x^2-y-1=\sqrt{4x+y+5}-\sqrt{x+2y-2}\), ta được: \(x^2+x-3=\sqrt{3x+7}-\sqrt{2-x}\)\(\Leftrightarrow x^2+x-2=\sqrt{3x+7}-1+2-\sqrt{2-x}\)\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=\frac{3\left(x+2\right)}{\sqrt{3x+7}+1}+\frac{x+2}{2+\sqrt{2-x}}\)\(\Leftrightarrow\left(x+2\right)\left(\frac{3}{\sqrt{3x+7}+1}+\frac{1}{2+\sqrt{2-x}}+1-x\right)=0\)

Vì \(x\le1\)nên\(\frac{3}{\sqrt{3x+7}+1}+\frac{1}{2+\sqrt{2-x}}+1-x>0\)suy ra x = -2 nên y = 4

Vậy nghiệm của hệ phương trình là (x;y) = (-2;4)

Khách vãng lai đã xóa
Kiệt Nguyễn
17 tháng 10 2020 lúc 18:48

b) \(\hept{\begin{cases}x^2+y^2=5\\x^3+2y^3=10x-10y\end{cases}}\Leftrightarrow\hept{\begin{cases}2\left(x^2+y^2\right)=10\left(1\right)\\x^3+2y^3=10\left(x-y\right)\left(2\right)\end{cases}}\)

Thay (1) vào (2), ta được: \(x^3+2y^3=2\left(x^2+y^2\right)\left(x-y\right)\Leftrightarrow\left(2y-x\right)\left(x^2+2y^2\right)=0\)

* Th1: \(x^2+2y^2=0\)(*)

Mà \(x^2\ge0\forall x;2y^2\ge0\forall y\Rightarrow x^2+2y^2\ge0\)nên (*) xảy ra khi x = y = 0 nhưng cặp nghiệm này không thỏa mãn hệ

* Th2: 2y - x = 0 suy ra x = 2y thay vào (1), ta được: \(y^2=1\Rightarrow y=\pm1\Rightarrow x=\pm2\) 

Vậy hệ có 2 nghiệm \(\left(x,y\right)\in\left\{\left(2;1\right);\left(-2;-1\right)\right\}\)

Khách vãng lai đã xóa
phan tuấn anh
Xem chi tiết
alibaba nguyễn
7 tháng 1 2017 lúc 9:15

\(\hept{\begin{cases}x^3-8x=y^3+2y\\x^2-3y^2=6\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}6\left(x^3-y^3\right)=6\left(8x+2y\right)\\x^2-3y^2=6\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}6\left(x^3-y^3\right)=\left(x^2-3y^2\right)\left(8x+2y\right)\\x^2-3y^2=6\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}24xy^2-2x^2y-2x^3=0\\x^2-3y^2=6\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x\left(3y-x\right)\left(4y+x\right)=0\\x^2-3y^2=6\end{cases}}\)

Đơn giản rồi làm tiếp nhé

alibaba nguyễn
7 tháng 1 2017 lúc 9:29

\(\hept{\begin{cases}5x^2-3y=x-3xy\\x^3-x^2=y^2-3y^3\end{cases}}\)

Với x = 0 thì y = 0

Với x \(\ne\)0 thì nhân pt trên cho x ta được

\(\Leftrightarrow\hept{\begin{cases}5x^3-3yx=x^2-3x^2y\left(1\right)\\x^3-x^2=y^2-3y^3\left(2\right)\end{cases}}\)

Lấy (1) + (2) vế theo vế được

\(\Leftrightarrow6x^3-3xy-x^2=x^2+y^2-3x^2y-3y^3\)

\(\Leftrightarrow6x^3-3xy-2x^2-y^2+3x^2y+3y^3=0\)

\(\Leftrightarrow\left(x+y\right)\left(3y^2-3xy-y+6x^2-2x\right)=0\)

Tới đây thì đơn giản roofin làm tiếp nhé

phan tuấn anh
7 tháng 1 2017 lúc 10:34

thank nha 

Xem chi tiết
Uzumaki Naruto
Xem chi tiết
Incursion_03
1 tháng 5 2019 lúc 17:08

\(\hept{\begin{cases}x^2+xy+y^2=3\left(1\right)\\x^3+3\left(y-x\right)=1\end{cases}}\)

\(\Rightarrow x^3+\left(y-x\right)\left(x^2+xy+y^2\right)=1\)

\(\Leftrightarrow x^3+y^3-x^3=1\)

\(\Leftrightarrow y^3=1\)

\(\Leftrightarrow y=1\)

Thế vô pt (1) được \(x^2+x+1=3\)

\(\Leftrightarrow x^2+x-2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)

khánhchitt3003
Xem chi tiết
Nguyễn Ngọc Mai Anh
Xem chi tiết
Yume Nguyễn
13 tháng 12 2018 lúc 12:02

\(x^2-y^2+x-y=5\)\(\Leftrightarrow\left(x^2-y^2\right)+\left(x-y\right)=5\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)+\left(x-y\right)=5\)

\(\Leftrightarrow\left(x-y\right)\left(x-y+1\right)=5\)

Yume Nguyễn
13 tháng 12 2018 lúc 12:07

\(x^3-x^2y-xy^2+y^3=6\)

\(\Leftrightarrow\left(x^3+y^3\right)-\left(x^2y+xy^2\right)=6\)

\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)-xy\left(x+y\right)=6\)

\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2-xy\right)=6\)

\(\Leftrightarrow\left(x+y\right)\left(x^2-2xy+y^2\right)=6\)

\(\Leftrightarrow\left(x+y\right)\left(x-y\right)^2=6\)

Hoàng hôn  ( Cool Team )
27 tháng 9 2019 lúc 21:40

6x3−x2yxy2+y3=6

\Leftrightarrow\left(x^3+y^3\right)-\left(x^2y+xy^2\right)=6⇔(x3+y3)−(x2y+xy2)=6

\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)-xy\left(x+y\right)=6⇔(x+y)(x2−xy+y2)−xy(x+y)=6

\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2-xy\right)=6⇔(x+y)(x2−xy+y2−xy)=6

\Leftrightarrow\left(x+y\right)\left(x^2-2xy+y^2\right)=6⇔(x+y)(x2−2xy+y2)=6

\Leftrightarrow\left(x+y\right)\left(x-y\right)^2=6⇔(x+y)(xy)2=6

Cô nàng giấu tên
Xem chi tiết
Lạc Linh Miêu
Xem chi tiết
Bexiu
22 tháng 8 2017 lúc 5:39

c)
x2 - x - 6 = x2 +2x - 3x - 6
= x(x + 2) - 3(x + 2)
= (x + 2)(x - 3)
d)
x+ 4 = x4 + 4x2 + 4 - 4x2
= (x2 + 2)2 - (2x)2
= (x2 + 2 - 2x)(x2 + 2 + 2x

Lạc Linh Miêu
22 tháng 8 2017 lúc 20:54

Bexiu : Có 1 sự lạc đề nhẹ ^.^