Chứng minh rằng với n là số nguyên tố lẻ thì 3n+2 là số nguyên tố
Chứng minh rằng:
a, Hai số tự nhiên liên tiếp (khác 0) là hai số nguyên tố cùng nhau
b, Hai số lẻ liên tiếp là hai số nguyên tố cùng nhau
c, 2n+1 và 3n+1 với n ∈ N là hai số nguyên tố cùng nhau
a, Gọi d ∈ ƯC(n,n+1) => (n+1) – 1 ⋮ d => 1 ⋮ d => d = 1. Vậy n, n+1 là hai số nguyên tố cùng nhau
b, Gọi d ∈ ƯC(2n+1,2n+3) => (2n+3) – (2n+1) ⋮ d => 2 ⋮ d => d ∈ {1;2}. Vì d là số lẻ => d = 1 => dpcm
c, Gọi d ∈ ƯC(2n+1,3n+1) => 3.(2n+1) – 2.(3n+1) ⋮ d => 1 ⋮ d => d = 1 => dpcm
Chứng minh rằng:
a) Hai số tự nhiên liên tiếp (khác 0) là hai số nguyên tố cùng nhau.
b) Hai số lẻ liên tiếp là hai số nguyên tố cùng nhau.
c) 2n + 1 và 3n + 1 với n ∈ N là hai số nguyên tố cùng nhau
Đặt (3n+1,2n+1)=₫
=>(2(3n+1(,3(2n+1)=₫
=>(6n+2,6n+3)=₫=>6n+2...₫,6n+3...₫
=>6n+3-6n+2...₫=>1...₫=>₫=1
=>(3n+1,2n+1)=1 nên 3n+1,2n+1laf 2 snt cùng nhau
Chứng minh 2n+5 và 6n+17 là hai số nguyên tố cùng nhau
Chứng minh 2 số lẻ liên tiếp là hai số nguyên tố cùng nhau
Chứng minh n+3 và 3n+10 là hai số nguyên tố cùng nhau
Chứng minh rằng :
a) Hai số tự nhiên liên tiếp thì nguyên tố cùng nhau
b) Hai số lẻ liên tiếp thì nguyên tố cùng nhau
c) 2n+5 và 3n+7 là nguyên tố cùng nhau
Chứng minh rằng :
a) Hai số tự nhiên liên tiếp thì nguyên tố cùng nhau
b) Hai số lẻ liên tiếp thì nguyên tố cùng nhau
c) 2n+5 và 3n+7 là nguyên tố cùng nhau
tớ chỉ làm mẫu 1 câu thôi nhé, lười lắm
gọi 1 số là a, số kia là a+1
gọi ước chung lỡn nhất của 2 số đó là d
=> a chia hết cho d
a+1 chia hết cho d
=> a+1-a chia hết cho d
=> 1 chia hết cho d
d thuộc ước của 1 , d=1
=> 2 số đó nguyên tố cùng nhau, ok?
chứng minh rằng :
a, hai số tự nhiên liên tiếp ( khác 0 ) là hai số nguyên tố cùng nhau
b, hai số nguyên lẻ liên tiếp là hai số nguyên tố cùng nhau
c,2n + 1 và 3n + 1 (n thuộc N ) là hai số nguyên tố cùng nhau
a)Gọi 2 số tự nhiên liên tiếp là a;a+1
=>a+1-a chia hết cho WCLN của a;a+1
=1 mà ước của 1 là 1 nên ước chung lớn nhất của a;a+1 là 1.
Vậy 2 số tự nhiên liên tiếp là 2 số nguyên tố cùng nhau.
b)Gọi 2 số lẻ liên tiếp là a;a+2.
Làm như trên:
Hiệu:a+2-a=2
Vậy ước chung lớn nhất của a;a+2 là 1 hoặc 2.
Mà số lẻ ko chia hết cho 2 nên ước chung lớn nhất của a;a+2 là 1.
Vậy 2 số lẻ liên tiếp là 2 số nguyên tố cùng nhau.
c)Gọi WCLN(2n+1;3n+1)=d.
2n+1 chia hết cho d=>6n+3 chia hết cho d.
3n+1 ------------------=>6n+2 chia hết cho d.
Hiệu chia hết cho d,hiệu =1=>...
Vậy là số nguyên tố cùng nhau.
Chúc em học tốt^^
CHỨNG MINH RẰNG VỚI n THUỘC N THÌ 2 SỐ 2n+1 VÀ 3n+1 LÀ 2 SỐ NGUYÊN TỐ CÙNG NHAU
Gọi d là ước chung của 2n+1 và 3n+1
\(\Rightarrow2n+1⋮d,3n+1⋮d\)
\(\Rightarrow3\left(2n+1\right)-2\left(3n+1\right)⋮d\)
\(\Rightarrow6n+3-6n-2⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1.\)
Vậy với \(n\in N\)thì 2n+1 và 3n+1 là 2 số nguyên tố cùng nhau.
Gọi d là ước chung của 2n+1 và 3n+1
⇒2n+1⋮d,3n+1⋮d
⇒3(2n+1)−2(3n+1)⋮d
⇒6n+3−6n−2⋮d
⇒1⋮d⇒d=1.
Vậy với n∈Nthì 2n+1 và 3n+1 là 2 số nguyên tố cùng nhau.
Chứng minh rằng với mọi số tự nhiên n thì 2n+1 và 3n+2 là hai số nguyên tố cùng nhau
Gọi d là ƯCLN(2n+1, 3n+2)
Ta có: 2n+1 chia hết cho d, 3n+2 chia hết cho d
=> 2(3n+2) - 3(2n+1) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy 2n+1 và 3n+2 là 2 số nguyên tố cùng nhau
cre: h
chứng minh rằng với mọi số tự nhiên n thì 2n+5 và 3n+7 là 2 số nguyên tố cùng nhau
Giả sử: (2n+5;3n+7)=d
2n+5=3(2n+5)=6n+15 chc d
3n+7=2(3n+7)=6n+14 chc d
1 chia hết cho d
=> d=1 vậy 2n+5 và 3n+7 nguyên tố cùng nhau