Tìm nghiệm nguyên dương của pt \(5\left(x^2+xy+y^2\right)=7\left(x+2y\right)\)
tìm nghiệm nguyên x,y của phương trình \(5\left(x^2+xy+y^2\right)=7\left(x+2y\right)\)
ta có \(5\left(x^2+xy+y^2\right)=7\left(x+2y\right)\)
zì 5 , 7 là 2 số nguyên tố cùng nhau . Nên
\(\hept{\begin{cases}x+2y=5m\\x^2+xy+y^2=7m\end{cases}m\inℤ}\)
từ \(x+2y=5m=>5m-2y=x.\)thay zô \(x^2+xy+y^2=7m\)zà rút gọn ta được
\(\left(5m-2y\right)^2+\left(5m-2y\right)y+y^2=7m\Leftrightarrow3y^2-15my+25m^2-7m=0\left(1\right)\)
=>\(3\left(y^2-5my\right)+25m^2-7m=0=>3\left(y-\frac{5m}{2}\right)^2-\frac{75m^2}{4}=7m-25m^2\)
=>\(3\left(y-\frac{5m}{2}\right)^2=\frac{1}{4}\left(-25m^2+28m\right)\)
zì \(3\left(y-\frac{5m}{2}\right)^2\ge0\forall m,y\)
=>\(\frac{1}{4}\left(-25m^2+28m\right)\ge0\Leftrightarrow25m^2-28m\le0\Leftrightarrow m\left(m-\frac{28}{25}\right)\le0\Leftrightarrow0\le m\le\frac{28}{25}\)
mà \(m\inℤ\)nên \(m\in\left\{0,1\right\}\)
zới m=0 thay zô (1) ta được y=0. từ đó tính đc x=0
zới m =1 thây zô (1) ta được \(3y^2-15y+18=0=>y^2-5y+6=0=>\orbr{\begin{cases}y=2\\y=3\end{cases}}\)
zới y=2 , m=1 thì ta tính đc x=1
zới y=3 , m=1 thì ta tính đc x=-1
zậy \(\left(x,y\right)\in\left\{\left(0,0\right);\left(1,2\right)\left(-1,3\right)\right\}\)
Tìm nghiệm nguyên của pt: \(5\left(x^2+xy+y^2\right)=7\left(x+2y\right)\)
Ta có: \(5\left(x^2+xy+y^2\right)=7\left(x+2y\right)\)
\(\Leftrightarrow5x^2+x\left(5y-7\right)+5y^2-14y=0\)
Do \(\Delta\ge0\Rightarrow\left(5y-7\right)^2-20\left(5y^2-14y\right)\)
\(=-75y^2+210y+49\ge0\)
\(\Rightarrow-75\left(y-\dfrac{21+14\sqrt{3}}{15}\right)\left(y-\dfrac{21-14\sqrt{3}}{15}\right)\ge0\)
\(\Leftrightarrow\dfrac{21-14\sqrt{3}}{15}\le y\le\dfrac{21+14\sqrt{3}}{15}\)
Mà \(y\in Z\Rightarrow0\le y\le3\)
tới đây xét 3 trường hợp rồi làm tiếp
1.Giải pt \(\frac{1}{\left(2x+1\right)^2}+\frac{1}{\left(2x+2\right)^2}=3\)
2.Tìm nghiệm nguyên của pt \(x^3+y^3-x^2y-xy^2=5\)
\(a\orbr{x=\frac{\pm\sqrt{5}-3}{4}}\)
\(b\hept{\begin{cases}x=5\\y=4\end{cases}}\)
2)\(\Leftrightarrow\left(x^3-x^2y\right)+\left(y^3-xy^2\right)=5\)
\(\Leftrightarrow x^2\left(x-y\right)+y^2\left(y-x\right)=5\)
\(\Leftrightarrow x^2\left(x-y\right)-y^2\left(x-y\right)=5\)
\(\Leftrightarrow\left(x-y\right)\left(x^2-y^2\right)=5\)
TH1\(\hept{\begin{cases}x-y=1\\x^2-y^2=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=2\end{cases}\left(N\right)}}\)
TH2\(\hept{\begin{cases}x-y=5\\x^2-y^2=1\end{cases}\Leftrightarrow\hept{ }x,y\in\varnothing}\)
TH3\(\hept{\begin{cases}x-y=-1\\x^2-y^2=-5\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}\left(N\right)}}\)
TH4\(\hept{\begin{cases}x-y=-5\\x^2-y^2=-1\end{cases}\Leftrightarrow\hept{ }x,y\in\varnothing}\)
Vậy......
bạn mai anh làm đúng rồi mình xét thiếu trường hợp . nhưng nên phân tích thành (x+y)(x-y)2 dễ hơn
tìm ngiệm nguyên cua pt \(5\left(x^2+xy+y^2\right)=7\left(x+2y\right)\)
Tìm các nghiệm nguyên của phương trình: \(5\left(x^2+xy+y^2\right)=7\left(x+2y\right)\)
Tìm nghiệm nguyên của pt: \(x^2y^2\left(x+y\right)+x=2+y\left(x-1\right)\)
\(PT\Leftrightarrow xy\left(x+y-1\right)+\left(x+y-1\right)=1\)
\(\Leftrightarrow\left(x+y-1\right)\left(xy+1\right)=1\)
\(\Leftrightarrow\hept{\begin{cases}x+y-1=1\\xy+1=1\end{cases}hoac\hept{\begin{cases}x+y-1=-1\\xy+1=-1\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=2\\xy=0\end{cases}hoac\hept{\begin{cases}x+y=0\\xy=-2\end{cases}}}\)
Đến đây thì đơn giản rồi nhé :)))
Phương trình tương đương: \(\left(x+y\right)\left(x^2y^2+1\right)=xy+2\)
\(\Leftrightarrow x+y=\frac{xu+2}{x^2y^2+1}\)
\(\Rightarrow\left(xy+2\right)⋮\left(x^2y^2+1\right)\Rightarrow\left(x^2y^2-4\right)⋮\left(x^2y^2+1\right)\)
\(\Rightarrow\left(x^2y^2+1-5\right)⋮\left(x^2y^2+1\right)\Rightarrow5⋮\left(x^2y^2+1\right)\)
\(\Rightarrow x^2y^2+1\in\left\{1;5\right\}\Rightarrow x^2y^2\in\left\{0;4\right\}\Rightarrow xy\in\left\{-2;0;2\right\}\)
\(xy=0\Rightarrow xy=2\Rightarrow\left(x;y\right)\in\left\{\left(0;2\right);\left(2;0\right)\right\}\)\(xy-2\Rightarrow x+y=0\Rightarrow y=-x\Rightarrow x^2=2\left(ktm\right)\)\(xy=2\Rightarrow x+y=\frac{4}{5}\left(ktm\right)\)Vậy: \(\left(x,y\right)\in\left\{\left(0;2\right);\left(2;0\right)\right\}\)
Giải phương trình nghiệm nguyên: \(5\left(x^2+xy+y^2\right)=7\left(x+2y\right)\)
\(PT\Leftrightarrow5x^2+x\left(5y-7\right)+5y^2-14y=0\)
\(\Delta=\left(5y-7\right)^2-4.5.\left(5y^2-14y\right)\)
\(=196-3\left(5y-7\right)^2\)
Để phương trình có nghiệm thì \(\Delta\ge0\Rightarrow\left(5y-7\right)^2\le65\)
Mặt khác \(5y-7\equiv3\left(mod5\right)\)
\(\Rightarrow\left(5y-7\right)^2\equiv4\left(mod5\right)\)
do đó \(\left(5y-7\right)^2\in\left\{4,9,14,19,24,29,34,39,44,49,54,59,64\right\}\)
mà (5y-7)2 là số chính phưng nên \(\left(5y-7\right)^2\in\left\{4,9,64\right\}\)
Từ đó tính ra
\(5\left(x^2+xy+y^2\right)=7\left(x+2y\right)\)
\(\Leftrightarrow5x^2+5xy+5y^2-7x-14y=0\)
\(\Leftrightarrow5x^2+x\left(5y-7\right)+5y^2-14y=0\)
\(\Rightarrow\Delta_x=\left(5y-7\right)^2-4\cdot5\cdot\left(5y^2-14y\right)\)
\(=-75y^2+210y+49\)
\(=196-3\left(25y^2-2\cdot5y\cdot7+79\right)\ge0\)
\(=196-3\left(5y-7\right)^2\ge0\)
Để phương trình có nghiệm nguyên thì \(\Delta_x\ge0\Leftrightarrow\left(5y-7\right)^2\le65\)
Nhận thấy \(5y-7\equiv3\left(mod5\right)\Rightarrow\left(5y-7\right)^2\equiv4\left(mod5\right)\)
Do đó \(\left(5y-7\right)^2\in\left\{4;9;14;19;24;29;34;39;44;49;54;59\right\}\)
Mà \(\left(5y-7\right)^2\)chinh phương nên \(\left(5y-7\right)^2\in\left\{4;9;49\right\}\)
Đến đây ta xét trường hợp là ra.
Trl :
Bạn kia làm đúng rồi nhé !
Học tốt nhé bạn @
Giải p/trình nghiệm nguyên:\(5\left(X^2+XY+Y^2\right)\)=\(7\left(X+2Y\right)\)
tìm các nghiệm nguyên (x;y) của các phương trình:
a/ \(5\left(x^2+xy+y^2\right)=7\left(x+2y\right)\)
b/\(x^3+2y^2+3xy-x-y+3=0\)
c/\(9x+2=y^2+y\)