Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Nam Khánh
Xem chi tiết
Nguyễn Phương Uyên
30 tháng 6 2018 lúc 8:52

\(A=\frac{3x-7}{x+3}=\frac{3x+9-9-7}{x+3}=\frac{3\left(x+3\right)-16}{x+3}=3-\frac{16}{x+3}\)

để A đạt GTLN thì \(\frac{16}{x+3}\) nhỏ nhất

=> x + 3 là số nguyên âm lớn nhất

=> x + 3 = -1

=> x = -4

vậy x = -4 và \(max_A=3-\frac{16}{-4+3}=3-\frac{16}{-1}=3-\left(-16\right)=19\)

nguyen duc thang
30 tháng 6 2018 lúc 8:45

Để A là phân số => x + 3 khác 0 => x khác - 3 ( 1 )

TA có : A = \(\frac{3x-7}{x+3}\)\(\frac{3.\left(x+3\right)-16}{x+3}\)\(\frac{3.\left(x+3\right)}{x+3}-\frac{16}{x+3}\)= 3 - \(\frac{16}{x+3}\)

Để A đạt giá trị lớn nhất thì \(\frac{16}{x+3}\)phải đạt GTNN => x + 3 phải đạt giá trị lớn nhất mà x + 3 thuộc Ư ( 16 ) => x + 3 = 16 => x = 13 ( thỏa mãn 1 )

Vậy x = 13 thì A đạt giá trị lớn nhất

I don
30 tháng 6 2018 lúc 8:46

ta có: \(A=\frac{3x-7}{x+3}=\frac{3x+9-2}{x+3}=\frac{3.\left(x+3\right)-2}{x+3}=3-\frac{2}{x+3}\)

Để A đạt GTLN

\(\Rightarrow\frac{2}{x+3}\ge-2\) có GTNN

Dấu "=" xảy ra khi

2/x+3 = -2

=> x + 3 = -1

=> x = - 4

=> GTLN của A = 3 - (-2) = 5 tại x = -4

Trần Nam Khánh
Xem chi tiết
Dương Lam Hàng
30 tháng 6 2018 lúc 8:29

Ta có: \(A=\frac{3x-7}{x+3}=\frac{3\left(x+3\right)-16}{x+3}=3-\frac{16}{x+3}\)

Để A đạt giá trị nguyên \(\Leftrightarrow16⋮\left(x+3\right)\Leftrightarrow x+3\inƯ\left(16\right)=\left\{\pm1;\pm2;\pm4;\pm8;\pm16\right\}\)

Lập bảng, ta được:

x+31-12-24-48-816-16
x-2-4-1-51-75-1113-19

Vậy x = {-2;-4;-1;-5;1;-7;5;-11;13;-19} thì A đạt GTN

Kiên-Messi-8A-Boy2k6
30 tháng 6 2018 lúc 8:28

\(\frac{3x-7}{x+3}\)

\(\Rightarrow A=\frac{3.\left(x+3\right)-16}{x+3}\)

\(\Rightarrow A=3-\frac{16}{x+3}\) có GTNN

\(\Rightarrow X+3\) LÀ SỐ nguyên âm lớn nhất có thể

\(\Rightarrow x+3=-1\Rightarrow x=-4\)

lê thùy dương
30 tháng 6 2018 lúc 8:28

ta có A = 3*(x+3) -16 /x +3 = 3- 16/ x+3 

để a có gtn thì x+3 thuộc ước của 16 

lập bảng r giải thôi 

Lê Thị Tuyết
Xem chi tiết
Edogawa Conan
16 tháng 9 2018 lúc 13:37

1 Giải :

\(\frac{3x+7}{x-1}\)là phân số <=> x - 1 \(\ne\)0 => x \(\ne\)1

Ta có : \(\frac{3x+7}{x-1}=\frac{3\left(x-1\right)+8}{x-1}=3+\frac{8}{x-1}\)

Để \(\frac{3x+7}{x-1}\)là số nguyên thì 8 \(⋮\)x - 1 => x - 1 \(\in\)Ư(1; -1; 2; -2; 4; -4; 8; -8}

Lập bảng :

x - 1 1 -1 2 -2 4 -4 8 -8
   x 2 0 3 -1 5 -3 9 -7

Vậy x \(\in\){2; 0; 3; -1; 5; -3; 9; -7} thì \(\frac{3x+7}{x-1}\)là số nguyên

Doraemon
16 tháng 9 2018 lúc 13:47

Đặt \(A=\frac{3x+7}{x-1}\)

Ta có: \(A=\frac{3x+7}{x-1}=\frac{3x-3+10}{x-1}=\frac{3x-3}{x-1}+\frac{10}{x-1}=3+\frac{10}{x-1}\)

Để \(A\in Z\)thì \(\frac{10}{x-1}\in Z\Rightarrow10⋮x-1\Leftrightarrow x-1\in U\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\) 

Ta có bảng sau:

\(x-1\)\(1\)\(-1\)\(2\)\(-2\)\(5\)\(-5\)\(10\)\(-10\)
\(x\)\(2\)\(0\)\(3\)\(-1\)\(6\)\(-4\)\(11\)\(-9\)

Vậy, với \(x\in\left\{-9;-4;-1;0;2;3;6;11\right\}\)thì \(A=\frac{3x+7}{x-1}\in Z\)

Doraemon
16 tháng 9 2018 lúc 13:58

a, Ta có: \(-\left(x+1\right)^{2008}\le0\)

\(\Rightarrow P=2010-\left(x+1\right)^{2008}\le2010\)

Dấu " = " khi \(\left(x+1\right)^{2008}=0\Rightarrow x+1=0\Rightarrow x=-1\)

Vậy \(MAX_P=2010\Leftrightarrow x=-1\)

CHAU
Xem chi tiết
Vy Thị Hoàng Lan ( Toán...
20 tháng 6 2019 lúc 8:58

a, \(\frac{3x-7}{x-2}=3x+\frac{1}{x-2}\)

Để đạt giá trị nguyên thì 1 chia hết cho X - 2 

\(\Rightarrow x-2\)là ước của 1 \(\in\left\{-1,1\right\}\)

X - 2 = -1 \(\Rightarrow\)x = 1

X - 2 = 1 \(\Rightarrow\)x = 3 

Vậy x = 1 hoặc x= 3 thì số hữu tỉ đạt giá trị nguyên 

Kiệt Nguyễn
20 tháng 6 2019 lúc 14:37

b) \(\frac{x^2+4x+7}{x+2}=\frac{\left(x+2\right)^2+3}{x+2}=x+2+\frac{3}{x+2}\)

Dễ thấy x nguyên nên x + 2 nguyên.

\(\Rightarrow\)\(\frac{x^2+4x+7}{x+2}\inℤ\Leftrightarrow x\frac{3}{x+2}\in Z\)

\(\Rightarrow x+2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Lập bảng:

\(x+2\)\(1\)\(-1\)\(3\)\(-3\)
\(x\)\(-1\)\(-3\)\(1\)\(-5\)

Vậy \(x\in\left\{-5;-3;-1;1\right\}\)

Tuyết Phạm
Xem chi tiết
honoka sonoka
Xem chi tiết
Cô Hoàng Huyền
21 tháng 8 2017 lúc 11:14

a) Giả sử \(C=\frac{2x+3}{7}=t\left(t\in Z\right)\)

\(\Rightarrow x=\frac{7t-3}{2}\). Để \(x\in Z\) thì t phải lẻ. Nói cách khác \(t=2k+1\left(k\in Z\right)\)

Suy ra  \(x=\frac{7\left(2k+1\right)-3}{2}=14k+2\)

Vậy để \(\frac{2x+3}{7}\in Z\) thì \(x=14k+2\left(k\in Z\right)\)

b) Ta thấy \(C=\frac{6x-1}{3x+2}=\frac{\left(6x+4\right)-5}{3x+2}=2-\frac{5}{3x+2}\)

Do x nguyên nên C đạt GTNN khi \(\frac{5}{3x+2}\) lớn nhất. Điều này xảy ra khi 3x + 2 = 2 hay x = 0.

Vậy \(minC=-\frac{1}{2}\) khi x = 0.

 Nguyễn Thanh Tùng
Xem chi tiết
 Nguyễn Thanh Tùng
23 tháng 3 2019 lúc 22:53

B=\(\frac{2x-5}{x-1}\)

Kiệt Nguyễn
24 tháng 3 2019 lúc 5:50

Để \(A\inℤ\) thì \(\left(4x-6\right)⋮\left(2x+1\right)\)

\(\Leftrightarrow\left(4x+2-8\right)⋮\left(2x+1\right)\)

\(\Leftrightarrow\left[2\left(2x+1\right)+8\right]⋮\left(2x+1\right)\)

Vì \(\left[2\left(2x+1\right)\right]⋮\left(2x+1\right)\) nên \(8⋮\left(2x+1\right)\)

\(\Rightarrow2x+1\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

Mà 2x + 1 lẻ nên \(\Rightarrow2x+1\in\left\{\pm1\right\}\)

Lập bảng:

\(2x+1\)\(-1\)1\(\)
\(x\)\(-1\)\(0\)

Vậy \(x\in\left\{-1;0\right\}\)

B,C,E tương tự

Vo Le The Bao
Xem chi tiết
tth_new
12 tháng 11 2018 lúc 8:47

Thực hiện phép chia đa thức là ok =)))

Vo Le The Bao
12 tháng 11 2018 lúc 10:32

rõ ràng giùm mình ik

Kelly
12 tháng 11 2018 lúc 12:48

\(A=\frac{3x^3-9+x^2-6x}{x^2-2}\)

\(A=\frac{3x.\left(x^2-2\right)+\left(x^2-2\right)-7}{x^2-2}\)

\(A\in Z\Rightarrow7⋮x^2-2\)

=> x2-2 thuộc U(7)={1,-1,7,-7}

vì x thuộc Z

=> x={-1,1,3,-3}

Tho Vo
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 3 2021 lúc 12:49

Ta có: \(M=\dfrac{x^5+3x^3-x^2+3x-7}{x^2+2}\)

\(=\dfrac{x^5+2x^3+x^3+2x-x^2-2+x-5}{x^2+2}\)

\(=\dfrac{x^3\left(x^2+2\right)+x\left(x^2+2\right)-\left(x^2+2\right)+\left(x-5\right)}{x^2+2}\)

\(=\dfrac{\left(x^2+2\right)\left(x^3+x-1\right)+\left(x-5\right)}{\left(x^2+2\right)}\)

\(=x^3+x-1+\dfrac{x-5}{x^2+2}\)

Để M nguyên thì \(x-5⋮x^2+2\)

\(\Leftrightarrow\left(x-5\right)\left(x+5\right)⋮x^2+2\)

\(\Leftrightarrow x^2-25⋮x^2+2\)

\(\Leftrightarrow x^2+2-27⋮x^2+2\)

mà \(x^2+2⋮x^2+2\)

nên \(-27⋮x^2+2\)

\(\Leftrightarrow x^2+2\inƯ\left(-27\right)\)

\(\Leftrightarrow x^2+2\in\left\{1;-1;3;-3;9;-9;27;-27\right\}\)

\(\Leftrightarrow x^2+2\in\left\{3;9;27\right\}\)(Vì \(x^2+2\ge2\forall x\))

\(\Leftrightarrow x^2\in\left\{1;7;25\right\}\)

hay \(x\in\left\{1;-1;\sqrt{7};-\sqrt{7};5;-5\right\}\)

Vậy: Để M nguyên thì \(x\in\left\{1;-1;\sqrt{7};-\sqrt{7};5;-5\right\}\)