Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
LÊ VĂN THINH
Xem chi tiết
Sherry
Xem chi tiết
Bụng ღ Mon
Xem chi tiết
Pham Van Hung
30 tháng 11 2018 lúc 17:17

n2 chỉ có thể có các chữ số tận cùng là 0,1,4,5,6,9

Nên n2 + 2002 có các chữ số tận cùng lần lượt là 2;3;8;7;8;3

Mà số có tận cùng là các chữ số 2,3,7,8 ko là số chính phương.

Do đó: n2 + 2002 không là số chính phương với mọi n là STN.

Le Dinh Quan
Xem chi tiết
vu minh hang
Xem chi tiết
vu minh hang
Xem chi tiết
Thắng Nguyễn
8 tháng 5 2016 lúc 22:57

C1 ta có 3x^2 + 7y^2 = 2002 

<=> 3x^2=2002-7y^2 

<=> 3x^2=7(286-y^2) 

mặt khác (3;7)=1(nguyên tố cùng nhau) => x chia hết cho 7 <=> x^2 chia hết cho 7 

từ đó suy ra (286-y^2) chia hết cho 7 

<=> [287-(y^2+1) ] chia hết cho 7 

<=> y^2+1 chia hết cho 7 

giã sử y=7k +r (với 0<=r<=6 

=>y^2+1=(7k+r)^2+1=7(7k^2+2kr)+r^2 +1 

thử lại ta thấy với r =0;1;2;3;4;5;6 thì r^2 +1 o chia hết cho 7 => y^2+1 o chia hết cho 7 

=>đpcm
 

Thắng Nguyễn
8 tháng 5 2016 lúc 22:57

cách 2 
giữ 3x^3+7y^2=2002 (1) 

có nghiệm nguyên x,y 

từ (1) => x^2 chia hết cho 7 => x chia hết cho 7 => x => x^2=49 

=> x^2 có dạng 49t^2 (t thuộc Z) 

thay x^2=49t^2 vào (1) 

và nhận thấy y^2>=1 

=> 147t^2 <=1995 

=> t^2<=13 

-> t^2 = 1,4,9 

với t^2=1 ...=> x^2 =49 => y^2 =279,y#z 

t^2 =4 =>x^2=196 => y^2=258 (y#Z) 

t^=9 => x^2 =441 -> y^2 =223)(y#Z) 

đpcm

Nguyễn Quỳnh Chi
Xem chi tiết
Lê An Thi
8 tháng 12 2021 lúc 18:15
Xin lỗi nha mik cũng chịu tự nhiên lướt ngang qua lại thấy 😅
Khách vãng lai đã xóa
Nguyễn Gia Bảo
8 tháng 12 2021 lúc 20:27

5676538564875x787866688089=bao nhieu mn oi

Khách vãng lai đã xóa
Vũ Trí Dũng
8 tháng 12 2021 lúc 21:54

lớp mấy thế mà khó v tui lớp 5

Khách vãng lai đã xóa
Nguyễn Quang Minh
Xem chi tiết
Huy Lê Nguyễn Trường
Xem chi tiết