Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hương Tràm
Xem chi tiết
Nguyễn Đức Nam
7 tháng 5 2017 lúc 15:17

Ta có:

1/1! = 1

1/2! = 1/1.2

1/3! = 1/2.3

1/4! < 1/3.4

1/5! < 1/4.5

.........

1/2001! < 1/2000.2001

==> S < 1 + 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + ... + 1/2000.2001

S < 1 + 1 - 1/2 + 1/2 - 1/3 + ... + 1/2000 - 1/2001

S < 1 + 1 - 1/2001

S < 2 - 1/2001 < 2 < 3

==> S < 3

I love dễ thương
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
3 tháng 3 2017 lúc 20:10

\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+......+\frac{3}{43.46}\)

    \(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{43}-\frac{1}{46}\)

      \(=1-\frac{1}{46}< 1\)

Vậy \(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+......+\frac{3}{43.46}< 1\)

Nguyễn Bảo anh
Xem chi tiết
❤Firei_Star❤
Xem chi tiết
Edogawa Conan
7 tháng 8 2018 lúc 14:28

\(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2018}}\)

 \(2S=2.\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2018}}\right)\)

\(2S=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2017}}\)

\(2S-S=\left(1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2017}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^{2018}}\right)\)

\(S=1-\frac{1}{2^{2018}}< 1\)

Nguyễn Phúc Hậu
7 tháng 8 2018 lúc 14:32


\(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{...1}{2^{2018}}\)

\(\Rightarrow2S=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2017}}\)
\(2S-S=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2017}}-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{...1}{2^{2018}}\right)\)
\(S=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2017}}-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^{2018}}\)
\(S=1-\frac{1}{2^{2018}}\)
\(Mà 1-\frac{1}{2^{2018}}< 1\)
\(\Rightarrow S< 1\)

❔♥BFF♥ I am anonymous♥...
30 tháng 3 2019 lúc 15:07

Nguyễn Phúc Hậu Đã trổ tài r đó, 

Thành Nguyễn
Xem chi tiết
nguyen thi van khanh
10 tháng 4 2017 lúc 20:10

VÌ \(\frac{1}{2^2}=\frac{1}{2\cdot2}< \frac{1}{1\cdot2};\frac{1}{3^2}=\frac{1}{3\cdot3}< \frac{1}{2\cdot3};...........;\frac{1}{99^2}=\frac{1}{99\cdot99}< \frac{1}{99\cdot100}\)

\(\Rightarrow S< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+.....+\frac{1}{99\cdot100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{99}-\frac{1}{100}\)\(=1-\frac{1}{100}< 1\)\(\Rightarrow S< 1\)

VÌ \(\frac{1}{2\cdot3}< \frac{1}{2\cdot2};.....;\frac{1}{98\cdot99}< \frac{1}{99\cdot99}\)

\(\Rightarrow\)\(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+......+\frac{1}{98\cdot99}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{99}-\frac{1}{100}=\frac{1}{2}-\frac{1}{100}=\frac{50}{100}-\frac{1}{100}=\frac{49}{100}< S\)

\(\Rightarrow\frac{49}{100}< S< 1\)

\(K\)\(mk\)\(nha\)

Nguyễn Đình Long
Xem chi tiết
 Phạm Trà Giang
9 tháng 4 2019 lúc 12:59

Ta có: \(S=\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2019!}=1+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2019!}\)

Đặt \(M=\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{2019!}\)

\(\Rightarrow M< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2018\cdot2019}\)

\(\Rightarrow M< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2019}\)

\(\Rightarrow M< 1-\frac{1}{2019}=\frac{2019}{2019}-\frac{1}{2019}=\frac{2018}{2019}\)

\(\Rightarrow S< 1+\frac{2018}{2019}=\frac{2019}{2019}+\frac{2018}{2019}=\frac{4037}{2019}< 2\)

\(\Rightarrow S< 2\) ( ĐPCM )

Earth-K-391
Xem chi tiết

Giải:

\(S=\dfrac{1}{50}+\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{98}+\dfrac{1}{99}\) 

\(S=\left(\dfrac{1}{50}+\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{74}\right)+\left(\dfrac{1}{75}+...+\dfrac{1}{98}+\dfrac{1}{99}\right)\) 

\(\Rightarrow S>\left(\dfrac{1}{50}+\dfrac{1}{50}+\dfrac{1}{50}+...+\dfrac{1}{50}\right)+\left(\dfrac{1}{75}+...+\dfrac{1}{75}+\dfrac{1}{75}\right)\) 

\(\Rightarrow S>\dfrac{1}{2}+\dfrac{1}{3}>\dfrac{1}{2}\) 

\(\Rightarrow S>\dfrac{1}{2}\left(đpcm\right)\) 

Quynh Anh
19 tháng 5 2021 lúc 9:45

Ta có:S=1/50+1/51+1/52+...+1/99

S>1/50+1/50+1/50+....+1/50(50 số hạng)

S>1/50x50

S>1>1/2

=>S>1/2

Nguyễn Văn Thi
Xem chi tiết
Balotali
3 tháng 4 2015 lúc 15:38

  ta chuyển đề bài vế trái thành:

  (1+1/2+1/3+1/4+...+1/2001+1/2002) - 2(1/2+1/4+1/6+...+1/2002)

=(1+1/2+1/3+....+1/2002) - (1+1/2+1/3+1/4+...+1/1001)

=1/1002+1/1003+...+1/2002

=> điều phải chứng minh

 

Yến Nguyễn
Xem chi tiết