cmr 9.10^n+18 chia hết cho 27 với n thuộc N
Đặt \(A=9.10^n+18\)
\(27=9.3\)
Ta có:
\(A=9.10^n+18=9\left(10^n+2\right)\)
\(\Leftrightarrow A⋮9\)
Lại có:
\(10^n+2=10...0+2=10...02\)
\(\Leftrightarrow A⋮3\Rightarrow A=3k\)
\(\Rightarrow A=9.3k=27k\Leftrightarrow A⋮27\)
Vậy \(9.10^n+18⋮27\) (Đpcm)
CMR: với n thuộc N
a) 9.10n + 18 chia hết cho 27
b) 92n + 14 chia hết cho 5
a) 9.10n+9.2=9.(10n+2)
ta co : 9.(10n+2) chia het cho 9 vi 9 chia het cho 9 nen tich chia het cho 9
10n=10......0 ( n so 0) ==> 10n +2=10.....2 ( tong cac chu so la 3 nen chia het cho 3)
==> cả 2 điều trên cho ta : 9. (10n+2) chia het cho 27
b) 92n +14 = (92)n +14 = 81n +14
81n=.......1 -> 81n +14 = .....1 +14 =........5 ( chia het cho 5 vi chu so tan cung la 5)
Với mọi n thuộc N,cmr:
a) 9.10^n+18 chia hết cho 27
b)9^24+14 chia hết cho 5
c)6^2n+19-2^(n+1) chia hết cho 17
d)6^(2n+1)+5^(n+2) chia hết cho 31
bài này mà là tón 8 á?mik nghĩ là toán 6
Với mọi n thuộc N,cmr:
a) 9.10^n+18 chia hết cho 27
b)9^24+14 chia hết cho 5
c)6^2n+19-2^(n+1) chia hết cho 17
d)6^(2n+1)+5^(n+2) chia hết cho 31
Với mọi n thuộc N,cmr:
a) 9.10^n+18 chia hết cho 27
b)9^24+14 chia hết cho 5
c)6^2n+19-2^(n+1) chia hết cho 17
d)6^(2n+1)+5^(n+2) chia hết cho 31
giup voi
Với mọi n thuộc N,cmr:
a) 9.10^n+18 chia hết cho 27
b)9^24+14 chia hết cho 5
c)6^2n+19-2^(n+1) chia hết cho 17
d)6^(2n+1)+5^(n+2) chia hết cho 31
help............me
a)9.10n+18
=9.(10n+2)
=9.[1000....0000(n chữ số 0) +2]
=9.[1000....0002(n-1 chứ số 0)]
ta thấy + 9.[1000....0002(n-1 chứ số 0)] chia hết cho 9
+1000...0002(n-1 chữ số 0) chia hết cho 3 (vì tổng các chữ số của nó là 3 chia hết cho 3)
=>9.[1000....0002(n-1 chứ số 0)] chia hết cho 27 hay 9.10n+18 chia hết cho 27
CMR 9.10^n +18 chia hết cho 27
Cho n thuộc N, chứng minh rằng 9.10^n+18 chia hết cho 27
ta có 10^n có dạng 1000..0
=> 9.10^n có dạng 90...0
từ đó ta có 9.10^n +18 sẽ có dạng 900...018
=> 27:9,3 => 900...018:9,3
=> 9.10^n+18:27
cmr
10n+72n-1 chia hết cho 81
9.10n+18 chia hết cho 27