Tìm nghiệm nguyên của phương trình y^2=1+x+x^2+x^3+x^4
Mấy bạn chuyên toán giúp mình với. Cần gấp
tìm nghiệm nguyên của phương trình 2^x-3^y=1
giúp mình với mình cần gấp ạ
Phương trình:
\(2^{x} - 3^{y} = 1 \Rightarrow 2^{x} = 3^{y} + 1\)
Cả hai số \(2^{x}\) và \(3^{y} + 1\) đều là số nguyên dương, vậy \(x \geq 1\), \(y \geq 0\).
Bước 2: Thử với các số nguyên nhỏy = 0:\(2^{x} = 3^{0} + 1 = 1 + 1 = 2 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } x = 1\)
✅ Giải được: \(\left(\right. x , y \left.\right) = \left(\right. 1 , 0 \left.\right)\)
y = 1:\(2^{x} = 3^{1} + 1 = 4 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } x = 2\)
✅ Giải được: \(\left(\right. x , y \left.\right) = \left(\right. 2 , 1 \left.\right)\)
y = 2:\(2^{x} = 3^{2} + 1 = 9 + 1 = 10 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } x = \left(log \right)_{2} 10 \notin \mathbb{Z}\)
❌ Không có nghiệm nguyên
y = 3:\(2^{x} = 3^{3} + 1 = 27 + 1 = 28 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } x = \left(log \right)_{2} 28 \notin \mathbb{Z}\)
❌ Không có nghiệm nguyên
y = 4:\(2^{x} = 3^{4} + 1 = 81 + 1 = 82 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } x = \left(log \right)_{2} 82 \notin \mathbb{Z}\)
❌ Không có nghiệm nguyên
Bước 3: Kiểm tra tính khả thi tổng quátKhi \(y \geq 3\), \(3^{y} \equiv 0 \left(\right. m o d 9 \left.\right) \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } 3^{y} + 1 \equiv 1 \left(\right. m o d 9 \left.\right)\)Các lũy thừa của 2: \(2^{x} m o d \textrm{ } \textrm{ } 9\) lặp theo chu kỳ: 2, 4, 8, 7, 5, 1,…Xét \(2^{x} \equiv 1 \left(\right. m o d 3 \left.\right)\) hay \(2^{x} - 1 = 3^{y}\), theo định lý Catalan, nghiệm duy nhất cho phương trình lũy thừa cách nhau 1 là \(\left(\right. x , y \left.\right) = \left(\right. 3 , 2 \left.\right)\) cho phương trình \(3^{2} - 2^{3} = 1\), nhưng ở đây thứ tự khác nên chỉ có các nghiệm nhỏ đã tìm.Do đó, không có nghiệm lớn hơn.
✅ Kết luậnCác nghiệm nguyên của phương trình \(2^{x} - 3^{y} = 1\) là:
\(\boxed{\left(\right. x , y \left.\right) = \left(\right. 1 , 0 \left.\right) \&\text{nbsp};\text{v} \overset{ˋ}{\text{a}} \&\text{nbsp}; \left(\right. x , y \left.\right) = \left(\right. 2 , 1 \left.\right)}\)
\(y^2=x\left(x+1\right)\left(x+7\right)\left(x+8\right)\)
\(=\left(x^2+8x\right)\left(x^2+8x+7\right)\)
\(\Rightarrow4y^2=\left(2x^2+16x\right)\left(2x^2+16x+14\right)\)
\(=\left(2x^2+16x+7-7\right)\left(2x^2+16x+7+7\right)\)
\(=\left(2x^2+16x+7\right)^2-49\)
\(\Leftrightarrow\left(2x^2+16x+7\right)^2-4y^2=49\)
\(\Leftrightarrow\left(2x^2+16x+7-2y\right)\left(2x^2+16x+7+2y\right)=49=1.49=7.7\)
Xét các trường hợp và thu được các nghiệm là: \(\left(-3,0\right),\left(0,0\right)\).
Tìm nghiệm nguyên của phương trình: \(\left(x^2+y^2+1\right)^2-5x^2-4y^2-5=0.\)
Giúp mình với, mình cần gấp
phân tích đa thức thành nhân tử
Tìm mọi nghiệm ngyên của phương trình:\(\frac{x+y}{x^2-xy+y^2}=\frac{3}{7}\)
THÁNH NÀO CHUYÊN TOÁN VÀO GIẢI HỘ EM CÁI, CẢ HAI CÂU EM GỬI LÊN CẦN GẤP TRONG CHIỀU NAY.
Nhờ các bạn giải giùm mình 5 bài luôn nhé! Mình đang cần gấp lắm! Mình cảm ơn.
1. Cho x,y,z khác 0 và (x+y+ z)^2 = x^2+y^2+z^2.
C/m 1/x^3 + 1/y^3 + 1/z^3= 3/x*y*z.
2. Giải phương trình:
x^3 + 3ax^2 + 3(a^2 -bc)x +a^3+b^3 +c^3
(Ẩn x)
3. Tìm nghiệm nguyên của phương trình:
(x+y)^3=(x-2)^3 + (y+2)^3 + 6
4. Tìm nghiệm nguyên dương thỏa mãn cả hai phương trình
x^3 + y^3 + 3xyz= z^3
z^3=(2x+2y)^3
Cho phương trình 2(2m-3)(m+1)√x=3/x-m/2.Tìm giá trị tham số m để phương trình có nghiệm x=4.Giúp mình với ạ,mình đang cần gấp:(((
Bạn cần viết đề bằng công thức toán ( biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.
Tìm phương trình ẩn x với hệ số nguyên có nghiệm là \(\frac{2}{1-\sqrt[3]{2}}\)
Giúp mình với! Mình cần gấp ạ!
Đặt: \(a=\frac{2}{1-\sqrt[3]{2}}\)
<=> \(\left(1-\sqrt[3]{2}\right)a=2\)
<=> \(a-2=\sqrt[3]{2}a\)
<=> \(\left(a-2\right)^3=\left(\sqrt[3]{2}a\right)^3\)
<=> \(a^3-6a^2+12a-8=2a^3\)
<=> \(a^3+6a^2-12a+8=0\)
Vậy phương trình ẩn x cần tìm là: \(x^3+6x^2-12x+8=0\)
Cho phương trình: x^3+ax-4x-4=0
a) Xác định a để phương trình có nghiệm x=1
b) Với a vừa tìm được, tìm các nghiệm còn lại của phương trình.
Các bạn giúp mình với, mình cần gấp lắm, xin đa tạ.
a) với x=1=> (1)^3+a.1-4.1-4=0<=> 1+a-8=0<=>a=7
b) ta có phương trình
x^3+7x-4x-4 =0<=> x^3+3x-4=0
<=> x^3-x+4x-4=0
<=> x(x^2-1)+4(x-1)=0
<=> x(x-1)(x+1)+4(x-1)=0
<=> (x-1)(x^2+x+4)=0
<=> ..... tự làm tiếp nha
Cho phương trình: x2-2(m-1)x-m-3=0 (1)
a) giải phương trình với m=-3
b) tìm m để phương trình (1) có 2 nghiệm thỏa mãn hệ thức x21 + x22 =10
c) tìm hệ thức liên hệ giữa các nghiệm không phụ thuộc giá trị của m
Mn giúp mình với,mình cần gấp phần a mình làm đc rồi mn giúp mình phần b,c
b, \(\Delta'=b'^2-ac=\left[-\left(m-1\right)\right]^2-1.\left(-m-3\right)=m^2-2m+1+m+3\)
\(=m^2-m+4=m^2-m+\frac{1}{4}+\frac{15}{4}=\left(m-\frac{1}{2}\right)^2+\frac{15}{4}>0\)
Vậy pt (1) có 2 nghiệm x1,x2 với mọi m
Theo hệ thức vi-et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\left(2\right)\\x_1x_2=-m-3\left(3\right)\end{cases}}\)
Ta có: \(x_1^2+x_2^2=10\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=10\)
<=>\(4\left(m-1\right)^2-2\left(-m-3\right)=10\)
<=>\(4m^2-8m+4+2m+6=10\)
<=>\(4m^2-6m+10=10\Leftrightarrow2m\left(2m-3\right)=0\)
<=>\(\orbr{\begin{cases}m=0\\m=\frac{3}{2}\end{cases}}\)
c, Từ (2) => \(m=\frac{x_1+x_2+2}{2}\)
Thay m vào (3) ta có: \(x_1x_2=\frac{-x_1-x_2-2}{2}-3=\frac{-x_1-x_2-8}{2}\)
<=>\(2x_1x_2+x_1+x_2=-8\)