tìm giá trị nhỏ nhất của biểu thức E= ( x-4)^2 + ( 2x -1)^2
1) Tìm x, bIết:| 2x+5 |+4\(\ge\)25
2) Tìm giá trị nhỏ nhất của biểu thức:
a) A= |2x-3| - 5
b) B= |2x-1|+|3-2x|+5
3) Tìm giá trị lớn nhất của biểu thức:
A= -|2X+1|+7
B= |2x+3|-|2x+2|
1) \(\left|2x+5\right|\ge21\Rightarrow2x+5\ge21\)hoặc \(2x+5
2b) Áp dụng bất đẳng thức giá trị tuyệt đối: |a| + |b| \(\ge\) |a + b|. Dấu "=" xảy ra khi tích a.b \(\ge\) 0
Ta có: B = |2x - 1| + |3 - 2x| + 5 \(\ge\) |2x - 1+3 - 2x| + 5 = |2| + 5 = 7
=> Min B = 7 khi
(2x - 1)( 3 - 2x) \(\ge\) 0 => (2x - 1)(2x - 3) \(\le\) 0
Mà 2x - 1 > 2x - 3 nên 2x - 1 \(\ge\) 0 và 2x - 3 \(\le\) 0
=> x \(\ge\) 1/2 và x \(\le\) 3/2
tìm giá trị nhỏ nhất của biểu thức A=x2+2x+5
a có A = x^2+2x+5 =(x^2+2x+1)+4=(x+1)^2+4 \(\ge\)4
Dấu bằng xảy ra <=>x+1=0 <=>x=-1
\(A=x^2+2x+5=x^2+2.x+1+4=\left(x+1\right)^2+4\ge4\)
Đẳng thức xảy ra khi: \(x+1=0\Rightarrow x=-1\)
Vậy giá trị nhỏ nhất của A là 4 khi x= -1
Tìm giá trị nguyên của x để biểu thức M=2x-5/x có giá trị nhỏ nhất.
Ta có :
\(\frac{2x-5}{x}=\frac{2x}{x}-\frac{5}{x}=2-\frac{5}{x}\)
Để M có GTNN thì \(\frac{5}{x}\) phải có GTLN hay \(x>0\) và có GTNN
\(\Rightarrow\)\(x=1\)
\(\Rightarrow\)\(M=\frac{2x-5}{x}=\frac{2.1-5}{1}=\frac{-3}{1}=-3\)
Vậy \(M_{min}=-3\) khi \(x=1\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(P=x+\sqrt{4-x^2}\)
TXĐ: D=[-2,2]
P'=\(1-\frac{x}{\sqrt{4-x^2}}\)
P'=0<=> \(1-\frac{x}{\sqrt{4-x^2}}=0\)=>\(\hept{\begin{cases}x=\sqrt{4-x^2}\\4-x^2>0\end{cases}}\)
\(\hept{\begin{cases}x^2=4-x^2\\x\ge0\\-2< x< 2\end{cases}}\)
=> \(x=\sqrt{2}\)
P(-2)=-2
\(P\left(\sqrt{2}\right)=2\sqrt{2}\)
P(2)=2
Vậy GTLN của P=\(2\sqrt{2}\),GTNN là -2
1. Tìm giá trị nhỏ nhất của biểu thức P=(x+3)2 + (y-1/3)4 - 4
2. Tìm giá trị lớn nhất của biểu thức Q= \(\frac{7}{\left(3x-2\right)+2016}\)
Tìm giá trị nhỏ nhất của biểu thức D=x^2+5y^2+2xy-2y+2005. Tìm giá trị lớn nhất của biểu thức Q=-x^2-2y^2+2xy-y+1
Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức \(y=\dfrac{x^2+2}{x^2+x+1}\)
Ta có :\(y=\frac{x^2+2}{x^2+x+1}\)
\(\Leftrightarrow yx^2+yx+y=x^2+2\)
\(\Leftrightarrow x^2\left(y-1\right)+yx+y-2=0\)(1)
*Xét y = 1 thì pt trở thành \(x-1=0\)
\(\Leftrightarrow x=1\)
*Xét \(y\ne1\)thì pt (1) là pt bậc 2 ẩn x
Có \(\Delta=y^2-4\left(y-1\right)\left(y-2\right)\)
\(=y^2-4\left(y^2-3y+2\right)\)
\(=y^2-4y^2+12y-8\)
\(=-3y^2+12y-8\)
Pt (1) có nghiệm khi \(\Delta\ge0\)
\(\Leftrightarrow-3y^2+12y-8\ge0\)
\(\Leftrightarrow\frac{6-2\sqrt{3}}{3}\le y\le\frac{6+2\sqrt{3}}{3}\)
Tìm giá trị nhỏ nhất của biểu thức sau:H=|x-3|+|4+x|
tìm giá trị nhỏ nhất của biểu thức A =\(\left|2x-4\right|\) +\(\left|2x-6\right|\) +\(\left|2x-8\right|\)
Lời giải:
Áp dụng BĐT $|a|+|b|\geq |a+b|$ ta có:
$A=(|2x-4|+|2x-8|)+|2x-6|=(|2x-4|+|8-2x|)+|2x-6|$
$\geq |2x-4+8-2x|+|2x-6|$
$=4+|2x-6|\geq 4$
Vậy $A_{\min}=4$. Giá trị này đạt tại \(\left\{\begin{matrix}
(2x-4)(8-2x)\geq 0\\
2x-6=0\end{matrix}\right.\Leftrightarrow x=3\)