cho tứ giác abcd có b+d =180 ac à tia phân giác của góc a chứng minh cd=cd
1) Cho tứ giác lồi ABCD có góc B + D= 180°, CB= CD. Chứng minh AC là tia phân giác góc BAD
2) Tứ giác ABCD có AC là tia phân giác góc A, BC= CD, AB<AD
a) Lấy điểm E trên cạnh AD sao cho AE= AB. Chứng minh rằng góc ABC= AEC
b) Chứng minh góc B+ D= 180°
cho tứ giác ABCD có góc B + góc D= 180 độ, AC là tia phân giác của góc A. Chứng minh CB=CD
Cho tứ giác ABCD có CB = CD, góc B + D = 180 độ. Chứng minh AC là tia phân giác của góc A
Trên tia đối của tia DA lấy E sao cho DE= AB. Ta có B+ ADC= 180 độ
EDC+ ADC= 180 độ nên B= EDC
Tam giác ABC= tam giác EDC (c-g-c) suy ra A1= E (1) và AC= EC
Tam giác CAE có AC= EC nên tam giác CAE cân do đó A2= E
suy ra A2= E (2). Từ (1) và (2) suy ra AC là phân giác góc AcBADE12
Trên tia đối của tia DA lấy E sao cho DE= AB. Ta có B+ ADC= 180 độ
EDC+ ADC= 180 độ nên B= EDC
Tam giác ABC= tam giác EDC (c-g-c) suy ra A1= E (1) và AC= EC
Tam giác CAE có AC= EC nên tam giác CAE cân do đó A2= E
suy ra A2= E (2). Từ (1) và (2) suy ra AC là phân giác góc AcBADE12
Cho tứ giác lồi ABCD có góc B+D=180, CB=CD. Chứng minh AC là tia phân giác của góc BAD
Cho tứ giác ABCD, có góc B+ góc D= 180 độ. AC là tia phân giác của góc A. Chứng minh CB=CD
Nếu được thì giúp em vẽ hình với ạ
Ta có: \(\widehat{BAC}=\widehat{ACD}\)(hai góc so le trong, AB//CD)
\(\widehat{BAC}=\widehat{DAC}\)(AC là tia phân giác của \(\widehat{DAB}\))
Do đó: \(\widehat{DAC}=\widehat{DCA}\)
Xét ΔDAC có \(\widehat{DAC}=\widehat{DCA}\)(cmt)
nên ΔDAC cân tại D(Định lí đảo của tam giác cân)
Suy ra: DA=DC(Hai cạnh bên)
mà DA=BC(ABCD là hình thang cân)
nên CB=CD(đpcm)
Tứ giác ABCD có góc B + góc D = 180 độ, CB = CD. Chứng minh AC là tia phân giác của góc BAD.
cho tứ giác lồi ABCD có góc B=D = 180 độ, CB=CD. Chứng minh rằng AC là tia phân giác góc BAD
B+C=180 đô thì may ra còn có thể giải mặc dù ko biết là có ra đáp án hay không, chứ B=C=180 độ thì vẽ hình ra mà giải được bằng niềm tin à
Cho tứ giác ABCD có ^B+^D=180, AC là tia phân giác của ^A .Chứng minh rằng CB = CD.
Trên cạnh AD lấy điểm E sao cho AE = AB
Xét t/g ABC và t/g AEC có :
\(AB=AE\)
\(\widehat{BAC}=\widehat{EAC}\)( Vì AC là tia phân giác của góc BAD )
\(AC\) cạnh chung
\(\Rightarrow\)t/g ABC t/g AEC ( c-g-c )
\(\Rightarrow\)\(BC=CE\)và \(\widehat{ABC}=\widehat{AEC}\)
Tứ giác ABCD có : \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360độ\)
Mà \(\widehat{A}+\widehat{C}=180độ\)
\(\Rightarrow\widehat{B}+\widehat{D}=180độ\)
Từ \(\widehat{ABC};\widehat{AEC}\)\(và\)\(\widehat{DEC}+\widehat{AEC}=180độ\)
\(\Rightarrow\widehat{DEC}=\widehat{D}\)
\(Nên\)t/g CDE cân tại C \(\Rightarrow\)\(DC=CE\)
\(Từ\)\(BC=CE\)\(và\)\(DC=CE\)
\(\Rightarrow\)\(CB=CD\left(đpcm\right)\)
Tứ giác ABCD có góc B + góc D= =180 độ,AC là tia phân giác của góc A. Chứng minh BC=CD