A= 1/2.9 + 1/9.7 + 1/7.19 +......+ 1/502.507
Tính A
giúp mình với
A= 1/2.9 + 1/9.7 + 1/7.19 +......+ 1/502.507
Tính A
giúp mình với
1/2.9+1/9.7+1/7.19+.....+1/252.509
giải jup mình với
so sánh A VỚI 1/10
A=1/2.9 + 1/9.7 + 1/7.19 + ... + 1/252.509
1/2.9+1/9.7+1/7.19+..........+1/252.509 = ?
Tính tổng:
1/2.9 +1/9.7+1/7.19+...+1/252.504
Tính A\(=\frac{1}{2.9}+\frac{1}{9.7}+\frac{1}{7.19}+........+\frac{1}{252.504}\)
Ta có:\(\frac{1}{2.9}=\frac{1}{2}-\frac{1}{9}\)
\(\frac{1}{9.7}=\frac{1}{9}-\frac{1}{7}\)
\(⋮\)
\(\frac{1}{252.504}=\frac{1}{252}-\frac{1}{504}\)
\(A=\frac{1}{2}-\frac{1}{9}+\frac{1}{9}-\frac{1}{7}+\frac{1}{7}-...............+\frac{1}{252}-\frac{1}{504}\)
\(A=\frac{1}{2}-\frac{1}{504}\)
\(A=\frac{251}{504}\)
Tính A=\(\frac{1}{2.9}+\frac{1}{9.7}+\frac{1}{7.19}+......+\frac{1}{252.504}\)
Tính A = \(\frac{1}{2.9}+\frac{1}{9.7}+\frac{1}{7.19}+....+\frac{1}{252.502}\)
A =\ dfrac {1} {2.9} + \ dfrac {1} {9.7} + \ dfrac {1} {7.19} + ... + \ dfrac {1} {252.509}
A = 2. (\ dfrac {1} {4.9} + \ dfrac {1} {9.14} + \ dfrac {1} {14.19} + ... + \ dfrac {1} {504.509})
A =\ dfrac {2} {5}(\ dfrac {1} {4} - \ dfrac {1} {9} + \ dfrac {1} {9} - \ dfrac {1} {14} + \ dfrac {1} {14} - \ dfrac {1} {19} + ... + \ dfrac {1} {504} - \ dfrac {1} {509})
A =\ dfrac {2} {5}(\ dfrac {1} {4} - \ dfrac {1} {509})
A =\ dfrac {2} {5}(\ dfrac {509} {2036} - \ dfrac {4} {2036})
A =\ dfrac {2} {5}.\ dfrac {505} {2036}
A =\ dfrac {101} {1018}
Tính A:
\(\frac{1}{2.9}+\frac{1}{9.7}+\frac{1}{7.19}+...+\frac{1}{252.509}\)
Đặt \(A=\frac{1}{2.9}+\frac{1}{9.7}+\frac{1}{7.19}+...+\frac{1}{252.509}\)
\(\Leftrightarrow A=\frac{2}{5}.\left(\frac{5}{4.9}+\frac{5}{9.14}+\frac{5}{14.19}+...+\frac{5}{504.509}\right)\)
\(\Leftrightarrow A=\frac{2}{5}.\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{504}-\frac{1}{509}\right)\)
\(\Leftrightarrow A=\frac{2}{5}.\left(\frac{1}{4}-\frac{1}{509}\right)\)
\(\Leftrightarrow A=\frac{2}{5}.\frac{505}{2036}\)
\(\Leftrightarrow A=\frac{101}{1018}\)
~ Hok tốt ~
#)Giải :
\(A=\frac{1}{2.9}+\frac{1}{9.7}+\frac{1}{7.19}+...+\frac{1}{252.509}\)
\(A=\frac{2}{5}\left(\frac{5}{4.9}+\frac{5}{9.14}+\frac{5}{14.19}+...+\frac{5}{504.509}\right)\)
\(A=\frac{2}{5}\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+...+\frac{1}{504}-\frac{1}{509}\right)\)
\(A=\frac{2}{5}\left(\frac{1}{4}-\frac{1}{509}\right)\)
\(A=\frac{2}{5}\times\frac{505}{2036}\)
\(A=\frac{101}{1018}\)