Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bùi Hồng Anh
Xem chi tiết
thuyphi nguyen
Xem chi tiết
Blue Moon
Xem chi tiết
an danh
19 tháng 12 2018 lúc 19:56

lai hoi bo kien thuc rong ak

Lê Phan Anh Thư
Xem chi tiết
alibaba nguyễn
8 tháng 6 2018 lúc 9:47

Ta có:

\(\left(x-\frac{1}{y}\right)\left(y+\frac{1}{x}\right)=2\)

\(\Leftrightarrow x^2y^2-2xy-1=0\)

Giải ra tìm được xy thế vô pt sau giải tiếp

NGUYỄN MINH HUY
Xem chi tiết
Phùng Gia Bảo
Xem chi tiết
Tran Le Khanh Linh
3 tháng 5 2020 lúc 8:14

\(\hept{\begin{cases}y^6+y^3+2x^2=\sqrt{xy-x^2y^2}\left(1\right)\\4xy^3+y^2+\frac{1}{2}\ge2x^2+\sqrt{1+\left(2x-y\right)^2}\left(2\right)\end{cases}}\)

\(VP\left(1\right)=\sqrt{\frac{1}{4}-\left(xy-\frac{1}{2}\right)^2}\le\frac{1}{2}\Rightarrow VT\left(1\right)=y^6+y^3+2x^2\le\frac{1}{2}\)

\(\Leftrightarrow2x^2+2y^3+4x^2\le1\left(3\right)\)

Từ (2)(3) => \(8xy^3+2y^3+2\ge2y^6+4x^2+4x^2+2\sqrt{1+\left(2x-y\right)^2}\)

\(\Leftrightarrow8xy^3+2\ge2y^6+8x^2+2\sqrt{2+\left(2x-y\right)^2}\)

\(\Leftrightarrow4xy^3+1\ge y^6+4x^2+\sqrt{1+\left(2x-y\right)^2}\)

\(\Leftrightarrow1-\sqrt{1+\left(2x-y\right)^2}\ge y^6-4xy^3+4x^2=\left(y^3-2x\right)^2\left(4\right)\)

\(VT\left(4\right)\le0;VP\left(4\right)\ge0\). Do đó:

(4) \(\Leftrightarrow\hept{\begin{cases}y=2x\\y^3=2x\end{cases}\Leftrightarrow\hept{\begin{cases}y=2x\\y^3=y\end{cases}}}\)<=> \(\hept{\begin{cases}x=0\\y=0\end{cases}}\)hoặc \(\hept{\begin{cases}x=\frac{1}{2}\\y=1\end{cases}}\)hoặc \(\hept{\begin{cases}x=\frac{-1}{2}\\y=-1\end{cases}}\)

Thử lại chỉ có \(\left(x;y\right)=\left(\frac{-1}{2};-1\right)\)thỏa mãn

Vậy hệ đã cho có nghiệm duy nhất \(\left(x;y\right)=\left(\frac{-1}{2};-1\right)\)

Khách vãng lai đã xóa
Le Trang Nhung
Xem chi tiết
Team Free Fire 💔 Tớ Đan...
25 tháng 3 2020 lúc 9:35

cho mk hỏi ai chs lazi điểm danh cái đê ~ mk hỏi thật đấy k đùa nha ~ bình luận thì mk k cho 3 cái ~

Khách vãng lai đã xóa
ミ★ɦυүềη☆bùї★彡
Xem chi tiết
Full Moon
7 tháng 10 2018 lúc 20:55

NT: x=0; y=0 là nghiệm của hpt trên

+) Với x, y khác 0, ta chia 2 vế 2 pt của hpt cho x^2y^2, được:

\(\hept{\begin{cases}\frac{1}{x^2}+\frac{1}{y^2}=2\\\left(\frac{1}{x}+\frac{1}{y}\right)\left(2+\frac{2}{xy}\right)=8\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(\frac{1}{x}+\frac{1}{y}\right)^2-\left(\frac{2}{xy}+2\right)=0\\\left(\frac{1}{x}+\frac{1}{y}\right)\left(2+\frac{2}{xy}\right)=8\end{cases}}\)

Đặt : \(\frac{1}{x}+\frac{1}{y}=a;2+\frac{2}{xy}=b\)

Ta thu được:

\(\hept{\begin{cases}ab=8\\a^2-b=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=2\\b=4\end{cases}}\)

Theo cách đặt:

\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=2\\2+\frac{2}{xy}=4\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=1\end{cases}}\)

My Phan
Xem chi tiết
Kiệt Nguyễn
18 tháng 8 2020 lúc 9:20

+) Xét x = y = 0 thì thay vào hệ ta thấy thỏa mãn

Nhận thấy nếu \(x\ne0\)thì \(y\ne0\)và ngược lại

+) Xét \(x\ne0;y\ne0\)hệ phương trình tương đương với: \(\hept{\begin{cases}\frac{1}{x^2}+\frac{1}{y^2}=2\\\left(\frac{1}{x}+\frac{1}{y}\right)\left(1+\frac{1}{xy}\right)=4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x^2}+\frac{1}{y^2}=2\left(1\right)\\\left(\frac{1}{x}+\frac{1}{y}\right)\left(2+\frac{2}{xy}\right)=8\left(2\right)\end{cases}}\)

Thay (1) và (2), ta được: \(\left(\frac{1}{x}+\frac{1}{y}\right)^3=8\Rightarrow\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=2\\\frac{1}{xy}=1\end{cases}}\Rightarrow x=y=1\)

Vậy hệ có tập nghiệm \(\left(x,y\right)\in\left\{\left(0;0\right);\left(1;1\right)\right\}\)

Khách vãng lai đã xóa