Giải hệ phương trình: \(\hept{\begin{cases}2x^2-xy=1\\4x^2+4xy-y^2=7\end{cases}}\)
Giải hệ phương trình: \(\hept{\begin{cases}xy^2+2x+y=4xy\\\frac{1}{xy}+\frac{1}{y^2}+\frac{y}{x}=3\end{cases}}\)
giải hệ phương trình
a. \(\hept{\begin{cases}y+xy^2=6x^2\\1+x^2y^2=5x^2\end{cases}}\)
b,\(\hept{\begin{cases}\sqrt{7x+y}+\sqrt{2x+y}=5\\\sqrt{2x+y}+x-y=2\end{cases}}\)
c,\(\hept{\begin{cases}4\left(x^2+y^2\right)+4xy+\frac{3}{\left(x+y\right)^2}=7\\\end{cases}}\)
Giải hệ phương trình: \(\hept{\begin{cases}4x^2+y^4-4xy^3=1\\4x^2+2y^2-4xy=2\end{cases}}\)
Giải hệ phương trình:
\(\hept{\begin{cases}\left(x-\frac{1}{y}\right)\left(y+\frac{1}{x}\right)=2\\2x^2y+xy^2-4xy=2x-y\end{cases}}\)
Ta có:
\(\left(x-\frac{1}{y}\right)\left(y+\frac{1}{x}\right)=2\)
\(\Leftrightarrow x^2y^2-2xy-1=0\)
Giải ra tìm được xy thế vô pt sau giải tiếp
Giải hệ phương trình:
\(\hept{\begin{cases}x^2y+2y+x=4xy\\\frac{1}{x^2}+\frac{1}{xy}+\frac{x}{y}=3\end{cases}}\)
Giải hệ phương trình: \(\hept{\begin{cases}y^6+y^3+2x^2=\sqrt{xy-x^2y^2}\\4xy^3+y^3+\frac{1}{2}\ge2x^2+\sqrt{1+\left(2x-y\right)^2}\end{cases}}\)
\(\hept{\begin{cases}y^6+y^3+2x^2=\sqrt{xy-x^2y^2}\left(1\right)\\4xy^3+y^2+\frac{1}{2}\ge2x^2+\sqrt{1+\left(2x-y\right)^2}\left(2\right)\end{cases}}\)
\(VP\left(1\right)=\sqrt{\frac{1}{4}-\left(xy-\frac{1}{2}\right)^2}\le\frac{1}{2}\Rightarrow VT\left(1\right)=y^6+y^3+2x^2\le\frac{1}{2}\)
\(\Leftrightarrow2x^2+2y^3+4x^2\le1\left(3\right)\)
Từ (2)(3) => \(8xy^3+2y^3+2\ge2y^6+4x^2+4x^2+2\sqrt{1+\left(2x-y\right)^2}\)
\(\Leftrightarrow8xy^3+2\ge2y^6+8x^2+2\sqrt{2+\left(2x-y\right)^2}\)
\(\Leftrightarrow4xy^3+1\ge y^6+4x^2+\sqrt{1+\left(2x-y\right)^2}\)
\(\Leftrightarrow1-\sqrt{1+\left(2x-y\right)^2}\ge y^6-4xy^3+4x^2=\left(y^3-2x\right)^2\left(4\right)\)
\(VT\left(4\right)\le0;VP\left(4\right)\ge0\). Do đó:
(4) \(\Leftrightarrow\hept{\begin{cases}y=2x\\y^3=2x\end{cases}\Leftrightarrow\hept{\begin{cases}y=2x\\y^3=y\end{cases}}}\)<=> \(\hept{\begin{cases}x=0\\y=0\end{cases}}\)hoặc \(\hept{\begin{cases}x=\frac{1}{2}\\y=1\end{cases}}\)hoặc \(\hept{\begin{cases}x=\frac{-1}{2}\\y=-1\end{cases}}\)
Thử lại chỉ có \(\left(x;y\right)=\left(\frac{-1}{2};-1\right)\)thỏa mãn
Vậy hệ đã cho có nghiệm duy nhất \(\left(x;y\right)=\left(\frac{-1}{2};-1\right)\)
Giải hệ phương trình:
1. \(\hept{\begin{cases}2x^2+\sqrt{2x}=\left(x+y\right)y+\sqrt{x+y}\\\sqrt{x-1}+xy=\sqrt{y^2+21}\end{cases}}\)
2 \(\hept{\begin{cases}2x-y^2+xy-5x+y+2=\sqrt{y-2x+1}-\sqrt{3-3x}\\x^2-y-1=\sqrt{4x+y+5}-\sqrt{x-2y-2}\end{cases}}\)
cho mk hỏi ai chs lazi điểm danh cái đê ~ mk hỏi thật đấy k đùa nha ~ bình luận thì mk k cho 3 cái ~
Giải hệ phương trình \(\hept{\begin{cases}x^2+y^2=2x^2y^2\\\left(x+y\right)\left(1+xy\right)=4x^2y^2\end{cases}}\)
NT: x=0; y=0 là nghiệm của hpt trên
+) Với x, y khác 0, ta chia 2 vế 2 pt của hpt cho x^2y^2, được:
\(\hept{\begin{cases}\frac{1}{x^2}+\frac{1}{y^2}=2\\\left(\frac{1}{x}+\frac{1}{y}\right)\left(2+\frac{2}{xy}\right)=8\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(\frac{1}{x}+\frac{1}{y}\right)^2-\left(\frac{2}{xy}+2\right)=0\\\left(\frac{1}{x}+\frac{1}{y}\right)\left(2+\frac{2}{xy}\right)=8\end{cases}}\)
Đặt : \(\frac{1}{x}+\frac{1}{y}=a;2+\frac{2}{xy}=b\)
Ta thu được:
\(\hept{\begin{cases}ab=8\\a^2-b=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=2\\b=4\end{cases}}\)
Theo cách đặt:
\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=2\\2+\frac{2}{xy}=4\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=1\end{cases}}\)
Giải hệ phương trình \(\hept{\begin{cases}x^2+y^2=2x^2y^2\\\left(x+y\right)\left(1+xy\right)=4x^2y^2\end{cases}}\)
+) Xét x = y = 0 thì thay vào hệ ta thấy thỏa mãn
Nhận thấy nếu \(x\ne0\)thì \(y\ne0\)và ngược lại
+) Xét \(x\ne0;y\ne0\)hệ phương trình tương đương với: \(\hept{\begin{cases}\frac{1}{x^2}+\frac{1}{y^2}=2\\\left(\frac{1}{x}+\frac{1}{y}\right)\left(1+\frac{1}{xy}\right)=4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x^2}+\frac{1}{y^2}=2\left(1\right)\\\left(\frac{1}{x}+\frac{1}{y}\right)\left(2+\frac{2}{xy}\right)=8\left(2\right)\end{cases}}\)
Thay (1) và (2), ta được: \(\left(\frac{1}{x}+\frac{1}{y}\right)^3=8\Rightarrow\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=2\\\frac{1}{xy}=1\end{cases}}\Rightarrow x=y=1\)
Vậy hệ có tập nghiệm \(\left(x,y\right)\in\left\{\left(0;0\right);\left(1;1\right)\right\}\)