Gọi a,b,c là các cạnh của 1 tam giác vuông, hla2 đường cao ứng cạnh huyền a. CMR có các cạnh a+h; b+c và h cũng là 1 tam giác vuông
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Gọi a,b,c là các cạnh của 1 tam giác vuông, h là đường cao ứng cạnh huyền a. CMR có các cạnh a+h; b+c và h cũng là 1 tam giác vuông
Gọi a,b,c là các cạnh của 1 tam giác vuông, h là đường cao ứng cạnh huyền a. CMR có các cạnh a+h; b+c và h cũng là 1 tam giác vuông
bài 99 gọi a,b.c là các cạnh của 1 tam giác vuông ,h là đường cao ứng với cạnh huyền a. chứng minh rằng tam giác có các cạnh a+h ; b+c và h cũng là 1 tam giác vuông
helppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp
Gọi a,b,c là các cạnh của 1 tam giác vuông.Gọi h là đường cao ứng với cạnh huyền a..Chứng minh : Tam giác có các cạnh a+h;b+c và h cũng là 1 tam giác vuông. ( Dùng định lí Py-ta-go đảo để giải, thầy mình gợi ý vậy )
Câu này dễ mak
Ta có tam giác vuông có 3 cạnh b,c,a với h là đường cao ứng với cạnh huyền a, ta có
+) b^2 + c^2 = a^2 (Định lí Pi-ta-go)
+) ah = bc(Hệ thức lượng)
Ta có:
+) (b + c)^2 + h^2 = b^2 + 2bc + c^2 + h^2 = a^2 + 2ah + h^2
+) (a + h)^2 = a^2 + 2ah + h^2
Từ đây suy ra: (b + c)^2 + h^2 = (a + h)^2
=> Tam giác có 3 cạnh là b + c; a+ h và h là tam giác vuông (Định lí Py-ta-go đảo)
Cho a,b,c là các cạnh của tam giác vuông , h là độ daif đường cao ứng với cạnh huyền a . Chứng minh tam giác có độ dài 3 canh a+h , b+c và h là độ dài 3 cạnh tam giấc vuông.
Ký hiệu:
AB=c; AC=b; cạnh huyền BC=a; đường cao CH=h Ta có
Xét hai t/g vuông AHC và ABC có
\(\widehat{C}\)chung
\(\widehat{CAH}=\widehat{ABC}\)(cùng phụ với \(\widehat{C}\))
=> t/g AHC đồng dạng với ABC \(\Rightarrow\frac{b}{a}=\frac{h}{c}\Rightarrow bc=ah\)
Xét t/g vuông ABC có
\(b^2+c^2=a^2\Rightarrow\left(b+c\right)^2=a^2+2bc\)
\(\Rightarrow\left(b+c\right)^2=a^2+2ah\)( bc=ah chứng minh trên)
\(\Rightarrow\left(b+c\right)^2=\left(a^2+2ah+h^2\right)-h^2=\left(a+h\right)^2-h^2\)
\(\Rightarrow\left(b+c\right)^2+h^2=\left(a+h\right)^2\)
=> b+c; a+h; h là 3 cạnh của tam giác vuông trong đó cạnh huyền là a+h
Sorry!!!
Phần ký hiệu sửa thành
Đường cao AH=h
xét tam giác abc vuông tại a cạnh huyền bc = a ; ac= b ; ab - c gọi ah = h là đường cao ứng với cạnh huyền ch=b' bh = c' cmr (h+c)^2=(a+b)^2+h^2
Cho 1 tam giác vuông có cạnh huyền bằng 20cm, đường cao ứng với cạnh huyền bằng 9,6cm. Tính các cạnh góc vuông của tam giác
bài 1: Trong tam giác vuông với các cạnh góc vuông có độ dài là 3 và 4,kẻ đường cao tương ứng vs cạnh huyền .Hãy tính đường cao này và độ dài các đoạn thẳng mà nó định ra trên cạnh huyền
bài 2: Đường cao của một tam giác vuông chia cạnh huyền thành hai đoạn thẳng có độ dài là 1 và 2.Hãy tính các cạnh góc vuông của tam giác này
AI GIÚP VS HELP ME CẦN GẤP
Bài 1:
Áp dụng đl pytago ta có:
\(\left(y+z\right)^2=3^2+4^2=9+16=25\)
=> y + z = 5
Áp dụng hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền ta có:
\(3^2=y\left(y+z\right)=5y\)
=>\(y=\frac{3^2}{5}=1,8\)
Có: y + z =5
=>z=5-y=5-1,8=3,2
Áp dụng hên thức liên quan tới đường cao:
\(x^2=y\cdot z=1,8\cdot3,2=\frac{144}{25}\)
=>\(x=\frac{12}{5}\)
Bài 2:
Ta có: △ABC vuông tại A và có đg cao AH
AB2 = BH.BC ( hệ thức lượng )
⇒ x2 = 1 . 3
⇒ x = \(\sqrt{1.3}=\sqrt{3}cm\)
AC2 = CH.BC
⇒ y2 = 2 . 3
⇒ y = \(\sqrt{6}\) cm
1) Một tam giác vuông có canh huyền là 5 và đường cao ứng với cạnh huyền là 2. Hãy tính cạnh nhỏ nhất của tam giác vuông này.
2) Cho một tam giác vuông. Biết tỉ số hai cạnh góc vuông là 3:4 và cạnh huyền là 125 cm. Tính độ dài các cạnh góc vuông và hình chiếu của các cạnh góc vuông trên cạnh huyền.
câu 2
Gọi tgv trên là tg ABC vuông tại A, AB/AC = 3/4 và AC = 125
Ta có: AB/AC = 3/4 => AB^2/AC^2 = 9/16 => 16AB^2 - 9AC^2 = 0 (*)
Ngoài ra: AC^2 = BC^2 - AB^2 = (125)^2 - AB^2 = 15625 - AB^2(**)
Thay (**) vào (*) ta có: 16AB^2 - 9(15625 - AB^2) = 0 => 25AB^2 - 140625 = 0
=> AB^2 = 5605. Vì AB > 0 => AB = 75
AC = 4/3 x AC => AC = 100
Gọi AH là là đường cao của tgv ABC, ta có BH, CH là hình chiếu của AB và AC.
Ta dễ dàng thấy tgv ABC, tgv BHA và tgv AHC là 3 tg đồng dạng, Ta có:
* BH/AB = AB/BC => BH = AB^2/BC = 75^2/125 = 45
* CH/AC = AC/BC => CH = AC^2/BC = 100^2/125 = 80
(hình bạn tự vẽ nhé)
Gọi hai hình chiếu của hai cạnh góc vuông trên cạnh huyền là x và y
Ta có : x.y = 2^2 = 4 (tích hai hình chiều bằng bình phương đường cao) (1)
và x + y = 5 => x = 5 - y
Thay vào (1) : (5 - y)y = 4 <=> y^2 - 5y + 4 = 0
<=> (x - 4)(x - 1) = 0 <=> x = 4 hoặc x = 1
=> y = 1 hoặc y = 4
Từ đó suy ra cạnh nhỏ nhất của tam giác là cạnh có hình chiếu bằng 1.
=> (cạnh gv nhỏ nhất)^2 = (hình chiếu nhỏ nhất).(cạnh huyền) = 1.5
=> cạnh góc vuông nhỏ nhất = căn 5
1) Gọi hai hình chiếu của hai cạnh góc vuông trên cạnh huyền là x và y
Ta có : x.y = 2^2 = 4 (tích hai hình chiều bằng bình phương đường cao) (1)
và x + y = 5 => x = 5 - y
Thay vào (1) : (5 - y)y = 4 <=> y^2 - 5y + 4 = 0
<=> (x - 4)(x - 1) = 0 <=> x = 4 hoặc x = 1
=> y = 1 hoặc y = 4
Từ đó suy ra cạnh nhỏ nhất của tam giác là cạnh có hình chiếu bằng 1.
=> (cạnh gv nhỏ nhất)^2 = (hình chiếu nhỏ nhất).(cạnh huyền) = 1.5
=> cạnh góc vuông nhỏ nhất = căn 5