So sánh:A= \(\frac{a^n-1}{a^n}\)và B=\(\frac{a^n}{a^n+1}\)
lm nhanh giúp mình, mình đang cần gấp
a. Cho a, b, c thuộc N*. Hãy so sánh \(\frac{a+n}{b+n}\)và \(\frac{a}{b}\)
b. Cho A = \(\frac{10^{11}-1}{10^{12}-1}\); B =\(\frac{10^{10}+1}{10^{11}+1}\). So sánh A và B
Các bạn giúp dùm mình nha mình đang cần gấp bạn nào làm đúng và nhanh nhất thì mình tick cho ( nhớ có lời giải nữa nha) ^^
mình nhầm câu b:
Áp dụng....
A=10^11-1/10^12-1<10^11-1+11/10^12-1+11=10^11+10/10^12+10=10.(10^10+1)/10.(10^11+1)
=10^10+1/10^11+1=B
Vậy A<B(câu này mới đúng còn câu b mình làm chung với câu a là sai)
a) Với a<b=>a+n/b+n >a/b
Với a>b=>a+n/b+n<a/b
Với a=b=>a+n/b+n=a/b
b) Áp dụng t/c a/b<1=>a/b<a+m/b+m(a,b,m thuộc z,b khác 0)ta có:
A=(10^11)-1/(10^12)-1=(10^11)-1+11/(10^12)-1+11=(10^11)+10/(10^12)+10=10.[(10^10)+1]/10.[(10^11)+1]
=(10^10)+1/(10^11)+1=B
Vậy A=B
So sánh
a) \(\frac{7}{15}và\frac{20}{39}\)
b)A= \(\frac{35420}{35423}\)và B= \(\frac{25343}{25345}\)
c)\(\frac{n}{n+1}và\frac{2n}{6n+1}\)
GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP LÉM!!!!!!!!!!!!!!!!!!!!!!
Tìm các số nguyên n đề A=\(\frac{2n+7}{n-5}+\frac{1-n}{n-5}\) là số nguyên. Giúp mình với, mình đang cần gấp
\(A=\frac{2n+7}{n-5}+\frac{1-n}{n-5}=\frac{2n+7+1-n}{n-5}=\frac{n+8}{n-5}=\frac{n-5+13}{n-5}=1+\frac{13}{n-5}\)
A là số nguyên <=> \(\frac{13}{n-5}\)là số nguyên
<=> \(13⋮n-5\)
<=> \(n-5\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
n-5 | 1 | -1 | 13 | -13 |
n | 6 | 4 | 18 | -8 |
Vậy n thuộc các giá trị trên
So sánh:
A) \(\dfrac{n+1}{n+2}\) và \(\dfrac{n}{n+3}\)
B) A= \(\dfrac{10^{11}-1}{10^{12}-1}\) và B= \(\dfrac{10^{10}+1}{10^{11}+1}\)
Mọi người giúp mình với mình đang cần gấp!
Lời giải:
a.
\(\frac{n+1}{n+2}=\frac{n+1}{n+2}+1-1=\frac{2n+3}{n+2}-1\)
\(> \frac{2n+3}{n+3}-1=\frac{(n+3)+n}{n+3}-1=\frac{n}{n+3}\)
b.
\(10A=\frac{10^{12}-10}{10^{12}-1}=\frac{(10^{12}-1)-9}{10^{12}-1}=1-\frac{9}{10^{12}-1}<1\)
\(10B=\frac{10^{11}+10}{10^{11}+1}=\frac{(10^{11}+1)+9}{10^{11}+1}=1+\frac{9}{10^{11}+1}>1\)
$\Rightarrow 10A< 10B\Rightarrow A< B$
1) So sánh
\(\frac{n+1}{n+2}và\frac{n}{n+3}\)
2)a) Cho \(\frac{a}{b}>\frac{c}{d}\)(b,d khác 0). Chứng minh rằng a x d > b x c
b) Cho a x d > b x c(b,d khác 0).Chứng minh rằng \(\frac{a}{b}>\frac{c}{d}\)
Giúp mình với, mình đang cần gấp
So sánh: A= \(\frac{5^{10}}{1+5+5^2+...+5^9}\) và B= \(\frac{6^{10}}{1+6+6^2+...+6^9}\)
lm nhanh hộ mình, mình đang cần gấp
mọi người ơi, lm xong bài này trong tối nay hộ mình cái, mình càn gấp lắm rùi
1. So sánh A và B biết : A = \(\frac{2019^{2019}+1}{2019^{2020}+1}\) ; B =\(\frac{2019^{2018}+1}{2019^{2019}+1}\)
2.So sánh M và N biết: M = \(\frac{100^{100}+1}{100^{99}+1}\) ; N= \(\frac{100^{101}+1}{100^{100}+1}\)
Hiện tại mình đang cần gấp giúp mk nha!
1
\(A=\frac{2019^{2019}+1}{2019^{2020}+1}< \frac{2019^{2019}+1+2018}{2019^{2020}+1+2018}=\frac{2019^{2019}+2019}{2019^{2020}+2019}=\frac{2019\left(2019^{2018}+1\right)}{2019\left(2019^{2019}+1\right)}\)
\(=\frac{2019^{2018}+1}{2019^{2019}+1}\)
2
\(M=\frac{100^{101}+1}{100^{100}+1}< \frac{100^{101}+1+99}{100^{100}+1+99}=\frac{100^{101}+100}{100^{100}+100}=\frac{100\left(100^{100}+1\right)}{100\left(100^{99}+1\right)}\)
\(=\frac{100^{100}+1}{100^{99}+1}=N\)
cho 3 số thực a,b,c khác không thỏa mãn a+b+c khác 0 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\). Chứng minh rằng trong ba số a,b,c luôn có hai số đối nhau. Từ đó suy ra với mọi số nguyên n lẻ thì: \(\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{a^n+b^n+c^n}\) Mk đang cần gấp ai lm trước mk tích
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\left(ab+ac+bc\right)\left(a+b+c\right)-abc=0\)
\(\Leftrightarrow\left(b+c\right)\left(ab+ac+bc\right)+a\left(ab+ac+bc\right)-abc=0\)
\(\Leftrightarrow\left(b+c\right)\left(ab+ac+bc\right)+a\left(ab+bc\right)=0\)
\(\Leftrightarrow\left(b+c\right)\left(ab+ac+bc\right)+a^2\left(c+b\right)=0\)
\(\Leftrightarrow\left(b+c\right)\left(ab+ac+bc+a^2\right)=0\)
\(\Leftrightarrow\left(b+c\right)\left(a+c\right)\left(a+b\right)=0\)
=> a=-b hoặc b=-c hoặc c = -a
Không mất tình tổng quát, giả sử a=-b -> a^n = -b^n ( n lẻ):
\(\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{c^n}=\frac{1}{a^n+b^b+c^n}\)
a) So sánh M và N:
\(M=\frac{2018}{2019}+\frac{2019}{2020}\)
\(N=\frac{2018+2019}{2019+2020}\)
b) So sánh A và B:
\(A=\frac{2017.2018-1}{2017.2018}\)
\(B=\frac{2018.2019-1}{2018.2019}\)
c) \(\frac{19}{31}\) và \(\frac{17}{35}\)
d) \(\frac{3535}{3534}\) và \(\frac{2323}{2322}\)
Làm nhanh mình đang cần gấp, sáng mai mình đi học thêm !! T.T
Đúng mình sẽ tick
a) Ta có :
N = 2018 + 2019/2019 + 2020
= 2018/2019 + 2020 + 2019/2019 + 2020
Ta thấy : 2018/2019 + 2020 < 2018/2019 ( Vì 2019 + 2020 > 2019 )
2019/2019 + 2020 < 2019/2020 ( Vì 2019 + 2020 > 2020 )
=> 2018/2019 + 2020 + 2019/2019 + 2020 < 2018/2019 + 2019/2020
=> M > N
b) Mk ko bt làm !!
c) Ta có :
19/31 > 1/2
17/35 < 1/2
=> 19/31 > 17/35
d) Ta có :
3535/3434 = 1 + 1/3534
2323/2322 = 1 + 1/2322
Ta thấy :
1/3534 < 1/2322 ( Vì 3534 > 2322 )
=> 1 + 1/3534 < 1 + 1/2322
=> 3535/3534 < 2323/2322
Hok tốt !