Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hoàng Ngọc Hân
Xem chi tiết
Cao Mỹ Hạnh
Xem chi tiết
vũ tiền châu
10 tháng 9 2017 lúc 20:06

vì \(\left|1-x\right|+\left|y-\frac{2}{3}\right|+\left|x+z\right|\ge0\) (với mọi x,y,z) 

nên kết hợp đề bài => \(\hept{\begin{cases}\left|1-x\right|=0\\\left|y-\frac{2}{3}\right|=0\\\left|x+z\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{2}{3}\\z=-1\end{cases}}}\)

Tạ Tiểu Mi
12 tháng 9 2017 lúc 11:59

hay qua Han oi, nay len online math hoi lun

Nguyễn Phát
Xem chi tiết
Bùi Thế Hào
4 tháng 5 2017 lúc 11:11

1/ (5x+2)2+(6x-3y)2=0

Ta nhận thấy: (5x+2)2\(\ge\)0  và (6x-3y)2\(\ge\)0

Tổng của 2 số dương bằng 0 khi và chỉ khi cả 2 số đều bằng 0

=> \(\hept{\begin{cases}\left(5x+2\right)^2=0\\\left(6x-3y\right)^2=0\end{cases}}< =>\hept{\begin{cases}5x+2=0\\2x-y=0\end{cases}}\)

=> \(\hept{\begin{cases}x=-\frac{2}{5}\\y=2x=-\frac{4}{5}\end{cases}}\)

2/ Làm tương tự 1:

\(\hept{\begin{cases}\left(x+2\right)^2=0\\\left(3x-7y\right)^2=0\end{cases}}< =>\hept{\begin{cases}x+2=0\\3x-7y=0\end{cases}}\)

=> \(\hept{\begin{cases}x=-2\\y=\frac{3x}{7}=-\frac{6}{7}\end{cases}}\)

___Kiều My___
Xem chi tiết
Đinh Thùy Linh
7 tháng 6 2016 lúc 16:14

a). Nhận xét rằng từng số hạng của tổng vế phải (VP) đều >=0 nên VP >= 0. Để dấu "=" xảy ra thì từng số hạng trong tổng VP đều bằng 0. Do đó ta có: x= 1/2; y=-3/2; z=-3/2.

b) Tương tự, VP>=0 để VP<=0 = VT chỉ xảy ra khi đạt dấu "=". Cho từng số hạng của VP =0, ta được: x=1; y=2/3; z=-1.

Phạm Tú Uyên
Xem chi tiết
Chu Công Đức
4 tháng 2 2020 lúc 8:58

1. Vì \(\left(x+6\right)^2\ge0\forall x\)\(\left|y-\frac{1}{2}\right|\ge0\forall y\)\(\left|x+y+z\right|\ge0\forall x,y,z\)

\(\Rightarrow\left(x+6\right)^2+\left|y-\frac{1}{2}\right|+\left|x+y+z\right|\ge0\)

mà \(\left(x+6\right)^2+\left|y-\frac{1}{2}\right|+\left|x+y+z\right|\le0\)( đề bài )

\(\Rightarrow\left(x+6\right)^2+\left|y-\frac{1}{2}\right|+\left|x+y+z\right|=0\)\(\Leftrightarrow\hept{\begin{cases}x+6=0\\y-\frac{1}{2}=0\\x+y+z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-6\\y=\frac{1}{2}\\-6+\frac{1}{2}+z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-6\\y=\frac{1}{2}\\z=\frac{11}{2}\end{cases}}\)

Vậy \(x=-6\)\(y=\frac{1}{2}\)\(z=\frac{11}{2}\)

2. \(B=\left|x-2016\right|+\left|x-2018\right|=\left|x-2016\right|+\left|2018-x\right|\ge\left|x-2016+2018-x\right|=\left|2\right|=2\)

Dấu " = " xảy ra \(\Leftrightarrow\left(x-2016\right)\left(2018-x\right)\ge0\)

TH1: \(\hept{\begin{cases}x-2016< 0\\2018-x< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 2016\\2018< x\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 2016\\x>2018\end{cases}}\)( vô lý )

TH2: \(\hept{\begin{cases}x-2016\ge0\\2018-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge2016\\2018\ge x\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge2016\\x\le2018\end{cases}}\Leftrightarrow2016\le x\le2018\)( thoả mãn )

Vậy \(minB=2\Leftrightarrow2016\le x\le2018\)

Khách vãng lai đã xóa
Kiều Nhung
Xem chi tiết
Snow Princess
9 tháng 1 2018 lúc 8:48

Câu 1: |x + 2| \(\le\)1 => |x + 2| = 0

=> x + 2 = 0

x = 0 - 2

x = -2

Câu 3: |x| + |y| + |z| = 0

Vì giá trị tuyệt đối phải là số lớn hơn hoặc bằng 0

=> |x| = 0, |y| = 0, |z| = 0

=> x = 0, y = 0, z = 0

•Mυη•
Xem chi tiết
Chu Công Đức
5 tháng 12 2019 lúc 16:57

\(|x|,|y|,|z|\)luôn \(\ge0\forall x,y,z\)

\(\Rightarrow|x|+|y|+|z|\ge0\)

mà \(|x|+|y|+|z|\le0\left(gt\right)\)

\(\Rightarrow|x|+|y|+|z|=0\)\(\Leftrightarrow x=y=z=0\)

Vậy \(x=y=z=0\)

Khách vãng lai đã xóa
Trà My Nguyễn Thị
Xem chi tiết
Nguyễn Hưng Thuận
Xem chi tiết
ST
19 tháng 1 2018 lúc 20:28

Ta có: \(\hept{\begin{cases}\left(5x-y\right)^{2016}\ge0\\\left|x^2-4\right|^{2017}\ge0\end{cases}\Rightarrow\left(5x-y\right)^{2016}+\left|x^2-4\right|\ge}0\)

Mà \(\left(5x-y\right)^{2016}+\left|x^2-4\right|^{2017}\le0\)

\(\Rightarrow\hept{\begin{cases}\left(5x-y\right)^{2016}=0\\\left|x^2-4\right|^{2017}=0\end{cases}\Rightarrow\hept{\begin{cases}5x-y=0\\x^2-4=0\end{cases}}\Rightarrow\hept{\begin{cases}y=\pm10\\x=\pm2\end{cases}}}\)

Vậy các cặp (x;y) là (2;10);(-2;-10)

Nguyễn Hưng Thuận
19 tháng 1 2018 lúc 20:29

cảm ơn