cmr neu a1<a2<...........<a9 thi\(\frac{a_1+a_2+...+a_9}{a_3+a_6+a_9}<3\)
CMR;neu tu day so \(\frac{\alpha1}{\alpha2}=\frac{\alpha2}{\alpha}=.......=\frac{a2010}{a2011}\) ta co the suy ra ti le thuc
\(\frac{a1}{a2011}=\left(\frac{a1+a2+....+a2010}{a2+a3+...+a2011}\right)\)
Tỷ lệ thức này sai nhé!
Đúng thì phải theo kết quả của lời giải này nhé!
Ta có: \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2010}}{a_{2011}}=k\Rightarrow k^{2010}=\frac{a_1.a_2...a_{2010}}{a_2.a_3...a_{2011}}=\frac{a_1}{a_{2011}}\)
Mà \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2010}}{a_{2011}}=k=\frac{a_1+a_2+...+a_{2010}}{a_2+a_3+...+a_{2011}}\)
Vậy \(\frac{a_1}{a_{2011}}=\left(\frac{a_1+a_2+...+a_{2010}}{a_2+a_3+...+a_{2011}}\right)^{2010}=k^{2010}\)
chung minh rang neu a1/a2=a2/a3=a3/a4=a4/a5=...a2015/2016 thi (a1+a2+a3+a4+.../a2+a3+a4+...a2016)=a1/a2016
CMR :(a1-a2)(a1-a3)(a1-a4)(a2-a3)(a2-a4)(a3-a4) chia het cho 12
cho a1/a2 = a2/a3 = ... = a8/a9 = a9/a1 và a1 + a2 + ... + a9 khác 0
CMR : a1 = a2 = ... = a9
Áp dụng tính chất DTSBN:
\(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=...=\dfrac{a_9}{a_1}=\dfrac{a_1+a_2+...+a_9}{a_2+a_3+...+a_1}=1\)
\(\dfrac{a_1}{a_2}=1\Rightarrow a_1=a_2\)
\(\dfrac{a_2}{a_3}=1\Rightarrow a_2=a_3\)
...
\(\dfrac{a_9}{a_1}=1\Rightarrow a_9=a_1\)
\(\Rightarrow a_1=a_2=...=a_9\)
cmr:(a1-a2)(a1-a3)(a1-a4)(a2-a3)(a2-a4)(a3-a4) chia hết cho 12
CMR: nếu a1/a2 = a2/a3 = a3/a4 = ... = a2003/a2004 thì a1/a2004 = ( a1+a2+a3+...+a2003 / a2+a3+a4+...+a2004 ) ^2003
con chó chết với con chuột chết tao là hs đại học đây!
chào chưa
Cho a1; a2; b1; b2 là 4 số dương có a1.a2=b1.b2
CMR: (a1/b1)+(a2/b2)>=2
Dễ vậy mà ko làm đc àk
\(a_1.a_2=b_1.b_2\Rightarrow\frac{a_1}{b_1}=\frac{b_2}{a_2}\)
\(\Rightarrow\frac{a_1}{b_1}+\frac{a_2}{b_2}=\frac{b_2}{a_2}+\frac{a_2}{b_2}\ge2\sqrt{\frac{b_2}{a_2}.\frac{a_2}{b_2}}=2\) (AM - GM)
có a1.a2=b1.b2
=> a1/b1=b2/a2
có \(\frac{a1}{b1}+\frac{a2}{b2}=\frac{b2}{a2}+\frac{a2}{b2}\)
áp dụng bất đẳng thức cosi cho 2 số dương có
\(\frac{b2}{a2}+\frac{a2}{b2}\ge2\sqrt{\frac{b2}{a2}.\left(\frac{a2}{b2}\right)}=2\)(đpcm)
Cho n số nguyên dương a1,a2,...,an. CMR:
(a1+a2+...+an)(1/a1 +1/a2 +...+ 1/an ) > hoặc = n^2
B1: Cmr: nếu a1/a2=a2/a3=a3/a4=...=a2000/a2001 thì a1/a2001=(a1+a2+a3+...+a2000/a2+a3+a4+...+a2001)
cho n số nguyên bất kỳ a1,a2,a3,...an
cmr S=|a1-a2|+|a2-a3|+....+|an-a1| luôn là một số chẵn
Ta có với số nguyên a bất kì:
| a | - a = a - a = 0 là số chẵn nếu a\(\ge\)0
| a | - a = -a - a = -2a là số chẵn nếu a < 0
Tóm lại: | a | - a là số chẵn với a nguyên bất kì
=> | a1 - a2 | - ( a1 - a2) là số chẵn
| a2 - a3 | - ( a2 - a3) là số chẵn
| a3 - a4 | - ( a3 - a4) là số chẵn
....
| an- a1 | - ( an - a1) là số chẵn
=> [ | a1 - a2| + |a2 - a3| + | a3 - a4| +...+ |an - a1| ] - [( a1 - a2) + (a2 - a3) + ( a3 - a4)+...+ (an - a1) ] là số chẵn
mà ( a1 - a2) + (a2 - a3) + ( a3 - a4)+...+ (an - a1) = 0 là số chẵn
=> | a1 - a2| + |a2 - a3| + | a3 - a4| +...+ |an - a1| là số chẵn
Vậy S luôn là 1 số chẵn.