Chứng minh rằng : 1/1*3+1/2*4+1/3*5+1/4*6+...+1/97*99+1/98*100 < 3/4
Giúp mik vs nha
Chứng Minh:
1/1*2+1/3*4+1/5*6+...+1/97*98+1/99*100=1/51+1/52+1/53+...+1/99+1/100
a)A=1-2+3-4+...+99-100
b)B=1-2-3+4+5-6-7+...+97-98-99+100
c)C=2100-299s-998-...-22-2-1
giup mik vs a
A=-1++(-1)+..+-(1) có 50 số -1
=>A=-1x50=-50
B=(1-2-3+4)+(5-6-7+8)+...+(97-98-99+100)
B=0+0+0+..+0
B=0
C=2^100-(2^99+2^98+...+1)
C=2^100-(2^100-1)
C=1
Chứng minh rằng : A=1×98+2×97+3×96+. . . . .+96×3+97×2+98×1/1×2+2×3+3×4+. . . . .+96×97+97×98+98×99=1/2
Đáp án rõ ràng nha
Giúp mk vs. Mai mk ki
Tính nhanh
a, 1-2+3-4+.....+2015-2016+2017
b,1+3-5-7+9+11+....+97-98-99+100+101
c,1-2-3+4+5-6-7+....+97-98-99+100+101
d,2^100-2^99-2^98-....-2-1
Nhanh nha m dang cần gấp
Tính tổng :
1/1 + (-2) + 3 + (-4) + ... + 19 + (-20)
2/1 - 2 + 3 - 4 + ... + 99 - 100
3/2 - 4 + 6 - 8 + ... + 48 -50
4/-1 + 3 - 5 + 7 - ... - 97 + 99
5/1 + 2 - 3 -4 + .... + 97 + 98 - 99 - 100
giải giúp mình nha ! thanks
Tính tổng :
A=1×3+2×4+3×5+4×6+...+97×99+98×100
Giải giúp mik nha
Bài 4: Tính tổng 1) 1 + (-2) + 3 + (-4) + . . . + 19 + (-20) 2) 1 – 2 + 3 – 4 + . . . + 99 – 100 3) 2 – 4 + 6 – 8 + . . . + 48 – 50 4) – 1 + 3 – 5 + 7 - . . . . + 97 – 99 5) 1 + 2 – 3 – 4 + ... + 97 + 98 – 99 - 100
1. 1 + ( -2) +3 +(-4) + .........+ 19 + (-20)
= -1 + ( -1) +....+(-1)
= -1. 10
= -10
2. 1 – 2 + 3 – 4 + . . . + 99 – 100
= ( -1) + (-1) +....+(-1)
= -1. 50
= -50
3. 2 – 4 + 6 – 8 + . . . + 48 – 50
= (-2) + (-2) +....+ (-2)
= -2. 12 + 26
= -24 + 26
= 2
4. – 1 + 3 – 5 + 7 - . . . . + 97 – 99
= 2 + 2 +......+2
= 2.25
= 50
5. 1 + 2 – 3 – 4 + ... + 97 + 98 – 99 - 100
= (1+2-3-4) +......+ ( 97+98-99 -100)
= -4 . (-4).....(-4)
= -4. 25
= -100
1)11-12+13-14+15-16+17-18+19-20+21-22+.........+99-100
2)2-4+6-8+......+1998-2000
3)-1+3-5+7-....+97-99
4)1+2-3-4+.........+97+98-99-100
5)1-2+3-4+.............+99-100
6)1+3-5-7+......+97-98-99+100
7)2100-299-298-..........22-2-1
8)1-4+7-10+........+307-310+313
Tính giá trị biểu thức A , biết rằng A = M : N
Mà M = \(\dfrac{\dfrac{1}{99}+\dfrac{2}{98}+\dfrac{3}{97}+\dfrac{4}{96}+...+\dfrac{97}{3}+\dfrac{98}{2}+\dfrac{99}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)
N = \(\dfrac{92-\dfrac{1}{9}-\dfrac{2}{10}-\dfrac{3}{11}-...-\dfrac{90}{98}-\dfrac{91}{99}-\dfrac{92}{100}}{\dfrac{1}{45}+\dfrac{1}{50}+\dfrac{1}{55}+...+\dfrac{1}{495}+\dfrac{1}{500}}\)
Ta có: \(M=\dfrac{\dfrac{1}{99}+\dfrac{2}{98}+\dfrac{3}{97}+\dfrac{4}{96}+...+\dfrac{97}{3}+\dfrac{98}{2}+\dfrac{99}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)
\(=\dfrac{\left(1+\dfrac{1}{99}\right)+\left(1+\dfrac{2}{98}\right)+\left(1+\dfrac{3}{97}\right)+\left(1+\dfrac{4}{96}\right)+...+\left(1+\dfrac{98}{2}\right)+1}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)
\(=\dfrac{\dfrac{100}{99}+\dfrac{100}{98}+\dfrac{100}{97}+...+\dfrac{100}{1}+\dfrac{100}{2}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)
=100
Ta có: \(N=\dfrac{92-\dfrac{1}{9}-\dfrac{2}{10}-\dfrac{3}{11}-...-\dfrac{90}{98}-\dfrac{91}{99}-\dfrac{92}{100}}{\dfrac{1}{45}+\dfrac{1}{50}+\dfrac{1}{55}+...+\dfrac{1}{495}+\dfrac{1}{500}}\)
\(=\dfrac{\left(1-\dfrac{1}{9}\right)+\left(1-\dfrac{2}{10}\right)+\left(1-\dfrac{3}{11}\right)+...+\left(1-\dfrac{90}{98}\right)+\left(1-\dfrac{91}{99}\right)+\left(1-\dfrac{92}{100}\right)}{\dfrac{1}{5}\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)}\)
\(=\dfrac{\dfrac{8}{9}+\dfrac{8}{10}+\dfrac{8}{11}+...+\dfrac{8}{99}+\dfrac{8}{100}}{\dfrac{1}{5}\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)}\)
\(=\dfrac{8}{\dfrac{1}{5}}=40\)
\(\Leftrightarrow\dfrac{M}{N}=\dfrac{100}{40}=\dfrac{5}{2}\)