Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thu Thủy vũ
Xem chi tiết
kudo shinichi
23 tháng 9 2018 lúc 19:05

\(4b^2c^2-\left(b^2+c^2-a^2\right)^2\)

\(=\left(2bc-b^2-c^2+a^2\right)\left(2bc+b^2+c^2-a^2\right)\)

\(=\left[a^2-\left(b^2-2bc+c^2\right)\right].\left[\left(b^2+2bc+c^2\right)-a^2\right]\)

\(=\left[a^2-\left(b-c\right)^2\right].\left[\left(b+c\right)^2-a^2\right]\)

\(=\left(a-b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(b+c+a\right)\)

\(\left(a^2+b^2-5\right)^2-4\left(ab+2\right)^2\)

\(=\left(a^2+b^2-5-2ab-4\right)\left(a^2+b^2-5+2ab+4\right)\)

\(=\left[\left(a-b\right)^2-3^2\right].\left[\left(a+b\right)^2-1\right]\)

\(=\left(a-b-3\right)\left(a-b+3\right)\left(a+b-1\right)\left(a+b+1\right)\)

Tham khảo nhé~

Arceus Official
Xem chi tiết
alibaba nguyễn
1 tháng 7 2017 lúc 10:28

\(a\left(b^2-c^2\right)+b\left(c^2-a^2\right)+c\left(a^2-b^2\right)=\left(c-a\right)\left(c-b\right)\left(b-a\right)\)

trương thị thơm
Xem chi tiết
Nguyễn Anh Dũng An
Xem chi tiết
Pham Van Hung
28 tháng 9 2018 lúc 11:56

       \(\left(a+b\right)\left(a^2-b^2\right)+\left(b+c\right)\left(b^2-c^2\right)+\left(c+a\right)\left(c^2-a^2\right)\)

\(=\left(a+b\right)\left(a^2-b^2\right)-\left(b+c\right)\left[c^2-a^2+a^2-b^2\right]+\left(c+a\right)\left(c^2-a^2\right)\)

\(=\left(a+b\right)\left(a^2-b^2\right)-\left(b+c\right)\left(c^2-a^2\right)-\left(b+c\right)\left(a^2-b^2\right)+\left(c+a\right)\left(c^2-a^2\right)\)

\(=\left(a^2-b^2\right)\left(a+b-b-c\right)+\left(c^2-a^2\right)\left(c+a-b-c\right)\)

\(=\left(a-b\right)\left(a+b\right)\left(a-c\right)+\left(c-a\right)\left(c+a\right)\left(a-b\right)\)

\(=\left(a-b\right)\left(a-c\right)\left(a+b-c-a\right)\)

\(=\left(a-b\right)\left(a-c\right)\left(b-c\right)\)

Chúc bạn học tốt.

Nguyễn Thị Ngố
Xem chi tiết
Đào Lê Anh Thư
3 tháng 7 2017 lúc 8:58

\(\left(a+b+c\right)^2+\left(a-b+c\right)^2-4b^2\)

\(=2a^2+2b^2+2c^2+2ab+2ac+2bc-2ab-2bc+2ac-4b^2\)

\(=2a^2-2b^2+2c^2+4ac\)

\(=2\left[\left(a^2+2ac+c^2\right)-b^2\right]=2\left[\left(a+c\right)^2-b^2\right]\)

\(=2\left(a+c-b\right)\left(a+b+c\right)\)

Trà My
3 tháng 7 2017 lúc 9:24

\(\left(a+b+c\right)^2-\left(a-b+c\right)^2-4b^2\)

\(=a^2+b^2+c^2+2ab+2bc+2ca+a^2+b^2+c^2-2ab-2bc+2ca-4b^2\)

\(=2a^2-2b^2+2c^2+4ca\)

\(=2\left(a^2-b^2+c^2+2ac\right)\)

\(=2\left[\left(a+c\right)^2-b^2\right]\)

\(=2\left(a-b+c\right)\left(a+b+c\right)\)

Trần Minh Quân
26 tháng 1 2022 lúc 14:35
(a+b+c)^2+(a-b+c)^2-4b^2 =(a+b+c)^2+(a-b+c-2b)×(a-b+c+2b) =(a+b+c)^2+(a+c-3b)×(a+b+c) =(a+b+c)^2×(a+b+c+a-3b+c) =(a+b+c)^2×(2a-2b+2c) =2(a+b+c)×(a-b+c) Câu trả lời đúng đây ạ😄
Khách vãng lai đã xóa
nhocanime
Xem chi tiết
Huy Rio
2 tháng 11 2016 lúc 17:43

\(a\left(b^2+c^2\right)+b\left(a^2+c^2\right)+c\left(a^2+b^2\right)+2abc\)

\(=ab^2+ac^2+ba^2+bc^2+ca^2+cb^2+2abc\)

\(=\left(ab^2+ba^2\right)+\left(ac^2+bc^2\right)+\left(ca^2+abc\right)+\left(cb^2+abc\right)\)

\(=ab\left(a+b\right)+c^2\left(a+b\right)+ca\left(a+b\right)+cb\left(a+b\right)\)

\(=\left(a+b\right)\left(ab+c^2+ca+cb\right)\)

\(=\left(a+b\right)\left(a+c\right)\left(b+c\right)\)

Huy Rio
2 tháng 11 2016 lúc 17:37

hình như cộng 2abc chứ sao +2ab

nhocanime
2 tháng 11 2016 lúc 19:20

Trong đề kt 1t trên lớp mình làm ghi có 2ab à. Vậy chắc là đề sai nhỉ. 

Thanks nha

Tung Nguyễn
Xem chi tiết
Trần Việt Linh
7 tháng 8 2016 lúc 21:59

\(\left(a+b\right)\left(a^2-b^2\right)+\left(b+c\right)\left(b^2-c^2\right)+\left(c+a\right)\left(c^2-a^2\right)\)

\(=a^3-ab^2+a^2b-b^3+b^3-bc^2+b^2c-c^3+c^3-a^2c+ac^2-a^3\)

\(=-ab^2+a^2b-bc^2+b^2c-a^2c+ac^2\)

\(=\left(a^2b-ab^2\right)+\left(ac^2-bc^2\right)-\left(a^2c-b^2c\right)\)

\(=ab\left(a-b\right)+c^2\left(a-b\right)-c\left(a-b\right)\left(a+b\right)\)

\(=\left(a-b\right)\left(ab+c^2-ac-bc\right)\)

\(=\left(a-b\right)\left[\left(ab-ac\right)+\left(c^2-bc\right)\right]\)

\(=\left(a-b\right)\left[a\left(b-c\right)+c\left(c-b\right)\right]\)

\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)

Tung Nguyễn
7 tháng 8 2016 lúc 21:58

chỗ cuối phải là c^2-a^2 nha mọi người

 

Nameless
Xem chi tiết
VRCT_Ran Love Shinichi
11 tháng 12 2017 lúc 14:07

\(P=a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)

\(P=a^2b-a^2c+b^2c-b^2a+c^2\left(a-b\right)\)

\(P=\left(a^2b-b^2a\right)-\left(a^2c-b^2c\right)+c^2\left(a-b\right)\)

\(P=ab\left(a-b\right)-c\left(a^2-b^2\right)+c^2\left(a-b\right)\)

\(P=ab\left(a-b\right)-c\left(a-b\right)\left(a+b\right)+c^2\left(a-b\right)\)

\(P=\left(a-b\right)\left[ab-c\left(a+b\right)+c^2\right]\)

\(P=\left(a-b\right)\left(ab-ca-cb+c^2\right)\)

\(P=\left(a-b\right)\left[\left(ab-cb\right)-\left(ca-c^2\right)\right]\)

\(P=\left(a-b\right)\left[b\left(a-c\right)-c\left(a-c\right)\right]\)

\(P=\left(a-b\right)\left(a-c\right)\left(b-c\right)\)

Vũ Nguyễn Phương Thảo
Xem chi tiết
Nguyễn Phương Uyên
10 tháng 3 2020 lúc 20:58

\(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)

\(=a^2\left(b-c\right)-b^2\left(a-c\right)+c^2\left(a-b\right)\)

\(=a^2\left(b-c\right)-b^2\left[\left(b-c\right)+\left(a-b\right)\right]+c^2\left(a-b\right)\)

\(=a^2\left(b-c\right)-b^2\left(b-c\right)-b^2\left(a-b\right)+c^2\left(a-b\right)\)

\(=\left(b-c\right)\left(a^2-b^2\right)+\left(a-b\right)\left(c^2-b^2\right)\)

\(=\left(b-c\right)\left(a-b\right)\left(a+b\right)+\left(a-b\right)\left(c-b\right)\left(c+b\right)\)

\(=\left(b-c\right)\left(a-b\right)\left(a+b\right)-\left(a-b\right)\left(b-c\right)\left(b+c\right)\)

\(=\left(b-c\right)\left(a-b\right)\left(a+b-b-c\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)

Khách vãng lai đã xóa