Phân tích đa thức thành nhân tử: \(B=4b^2+c^2-\left(b^2+c^2-a^2\right)^2\)
Phân tích các đa thức sau thành nhân tử:
\(4b^2c^2-\left(b^2+c^2-a^2\right)^2\)
\(\left(a^2+b^2-5\right)^2-4\left(ab+2\right)^2\)
\(4b^2c^2-\left(b^2+c^2-a^2\right)^2\)
\(=\left(2bc-b^2-c^2+a^2\right)\left(2bc+b^2+c^2-a^2\right)\)
\(=\left[a^2-\left(b^2-2bc+c^2\right)\right].\left[\left(b^2+2bc+c^2\right)-a^2\right]\)
\(=\left[a^2-\left(b-c\right)^2\right].\left[\left(b+c\right)^2-a^2\right]\)
\(=\left(a-b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(b+c+a\right)\)
\(\left(a^2+b^2-5\right)^2-4\left(ab+2\right)^2\)
\(=\left(a^2+b^2-5-2ab-4\right)\left(a^2+b^2-5+2ab+4\right)\)
\(=\left[\left(a-b\right)^2-3^2\right].\left[\left(a+b\right)^2-1\right]\)
\(=\left(a-b-3\right)\left(a-b+3\right)\left(a+b-1\right)\left(a+b+1\right)\)
Tham khảo nhé~
Phân tích đa thức thành nhân tử \(a\left(b^2-c^2\right)+b\left(c^2-a^2\right)+c\left(a^2-b^2\right)\)
\(a\left(b^2-c^2\right)+b\left(c^2-a^2\right)+c\left(a^2-b^2\right)=\left(c-a\right)\left(c-b\right)\left(b-a\right)\)
\(a\left(b+c\right)^2\left(b-c\right)+b\left(c+a\right)^2\left(c-a\right)+c\left(a+b\right)^2\left(a-b\right)\)
phân tích đa thức đa thức thành nhân tử
Phân tích đa thức thành nhân tử: \(\left(a+b\right)\left(a^2-b^2\right)+\left(b+c\right)\left(b^2-c^2\right)+\left(c+a\right)\left(c^2-a^2\right)\)
\(\left(a+b\right)\left(a^2-b^2\right)+\left(b+c\right)\left(b^2-c^2\right)+\left(c+a\right)\left(c^2-a^2\right)\)
\(=\left(a+b\right)\left(a^2-b^2\right)-\left(b+c\right)\left[c^2-a^2+a^2-b^2\right]+\left(c+a\right)\left(c^2-a^2\right)\)
\(=\left(a+b\right)\left(a^2-b^2\right)-\left(b+c\right)\left(c^2-a^2\right)-\left(b+c\right)\left(a^2-b^2\right)+\left(c+a\right)\left(c^2-a^2\right)\)
\(=\left(a^2-b^2\right)\left(a+b-b-c\right)+\left(c^2-a^2\right)\left(c+a-b-c\right)\)
\(=\left(a-b\right)\left(a+b\right)\left(a-c\right)+\left(c-a\right)\left(c+a\right)\left(a-b\right)\)
\(=\left(a-b\right)\left(a-c\right)\left(a+b-c-a\right)\)
\(=\left(a-b\right)\left(a-c\right)\left(b-c\right)\)
Chúc bạn học tốt.
phân tích đa thức thành nhân tử (a+b+c)^2+(a-b+c)^2-4b^2
\(\left(a+b+c\right)^2+\left(a-b+c\right)^2-4b^2\)
\(=2a^2+2b^2+2c^2+2ab+2ac+2bc-2ab-2bc+2ac-4b^2\)
\(=2a^2-2b^2+2c^2+4ac\)
\(=2\left[\left(a^2+2ac+c^2\right)-b^2\right]=2\left[\left(a+c\right)^2-b^2\right]\)
\(=2\left(a+c-b\right)\left(a+b+c\right)\)
\(\left(a+b+c\right)^2-\left(a-b+c\right)^2-4b^2\)
\(=a^2+b^2+c^2+2ab+2bc+2ca+a^2+b^2+c^2-2ab-2bc+2ca-4b^2\)
\(=2a^2-2b^2+2c^2+4ca\)
\(=2\left(a^2-b^2+c^2+2ac\right)\)
\(=2\left[\left(a+c\right)^2-b^2\right]\)
\(=2\left(a-b+c\right)\left(a+b+c\right)\)
Phân tích đa thức \(a\left(b^2+c^2\right)+b\left(a^2+c^2\right)+c\left(a^2+b^2\right)+2ab\)thành nhân tử.
\(a\left(b^2+c^2\right)+b\left(a^2+c^2\right)+c\left(a^2+b^2\right)+2abc\)
\(=ab^2+ac^2+ba^2+bc^2+ca^2+cb^2+2abc\)
\(=\left(ab^2+ba^2\right)+\left(ac^2+bc^2\right)+\left(ca^2+abc\right)+\left(cb^2+abc\right)\)
\(=ab\left(a+b\right)+c^2\left(a+b\right)+ca\left(a+b\right)+cb\left(a+b\right)\)
\(=\left(a+b\right)\left(ab+c^2+ca+cb\right)\)
\(=\left(a+b\right)\left(a+c\right)\left(b+c\right)\)
Trong đề kt 1t trên lớp mình làm ghi có 2ab à. Vậy chắc là đề sai nhỉ.
Thanks nha
phân tích đa thức thành nhân tử
\(\left(a+b\right)\left(a^2-b^2\right)+\left(b+c\right)\left(b^2-c^2\right)+\left(c+a\right)\left(c^2-b^2\right)\)
\(\left(a+b\right)\left(a^2-b^2\right)+\left(b+c\right)\left(b^2-c^2\right)+\left(c+a\right)\left(c^2-a^2\right)\)
\(=a^3-ab^2+a^2b-b^3+b^3-bc^2+b^2c-c^3+c^3-a^2c+ac^2-a^3\)
\(=-ab^2+a^2b-bc^2+b^2c-a^2c+ac^2\)
\(=\left(a^2b-ab^2\right)+\left(ac^2-bc^2\right)-\left(a^2c-b^2c\right)\)
\(=ab\left(a-b\right)+c^2\left(a-b\right)-c\left(a-b\right)\left(a+b\right)\)
\(=\left(a-b\right)\left(ab+c^2-ac-bc\right)\)
\(=\left(a-b\right)\left[\left(ab-ac\right)+\left(c^2-bc\right)\right]\)
\(=\left(a-b\right)\left[a\left(b-c\right)+c\left(c-b\right)\right]\)
\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)
Phân tích đa thức \(P=a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)thành nhân tử
\(P=a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)
\(P=a^2b-a^2c+b^2c-b^2a+c^2\left(a-b\right)\)
\(P=\left(a^2b-b^2a\right)-\left(a^2c-b^2c\right)+c^2\left(a-b\right)\)
\(P=ab\left(a-b\right)-c\left(a^2-b^2\right)+c^2\left(a-b\right)\)
\(P=ab\left(a-b\right)-c\left(a-b\right)\left(a+b\right)+c^2\left(a-b\right)\)
\(P=\left(a-b\right)\left[ab-c\left(a+b\right)+c^2\right]\)
\(P=\left(a-b\right)\left(ab-ca-cb+c^2\right)\)
\(P=\left(a-b\right)\left[\left(ab-cb\right)-\left(ca-c^2\right)\right]\)
\(P=\left(a-b\right)\left[b\left(a-c\right)-c\left(a-c\right)\right]\)
\(P=\left(a-b\right)\left(a-c\right)\left(b-c\right)\)
Phân tích đa thức \(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\) thành nhân tử
\(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)
\(=a^2\left(b-c\right)-b^2\left(a-c\right)+c^2\left(a-b\right)\)
\(=a^2\left(b-c\right)-b^2\left[\left(b-c\right)+\left(a-b\right)\right]+c^2\left(a-b\right)\)
\(=a^2\left(b-c\right)-b^2\left(b-c\right)-b^2\left(a-b\right)+c^2\left(a-b\right)\)
\(=\left(b-c\right)\left(a^2-b^2\right)+\left(a-b\right)\left(c^2-b^2\right)\)
\(=\left(b-c\right)\left(a-b\right)\left(a+b\right)+\left(a-b\right)\left(c-b\right)\left(c+b\right)\)
\(=\left(b-c\right)\left(a-b\right)\left(a+b\right)-\left(a-b\right)\left(b-c\right)\left(b+c\right)\)
\(=\left(b-c\right)\left(a-b\right)\left(a+b-b-c\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)