Tìm A của đa thức F(x):
F(x): A.X^2+5.X-3
Để đa thức có một nghiệm là x= 1/2
Cho đa thức f(x)=x3-a.x2-9.x+b
a) Tìm a và b để đa thức f(x) có nghiệm là 1 và 3.
b) Tìm tập hợp nghiệm của đa thức f(x) với a và b vừa tìm được ở trên.
a) Để đa thức f(x) có nghiệm là 1 và 3 thì \(1^3-a.1^2-9.1+b=3^3-a.3^2-9.3+b=0\)
=> \(1-a-9+b=27-9a-27+b\)
=> \(-a+9a+b-b=8\Rightarrow8a=8\Rightarrow a=1\)
Từ đó tính được b = 9.
b) Thay kết quả câu a vào f(x) ta được f(x) = \(x^3-x^2-9x+9\)
Đa thức f(x) có nghiệm khi:
\(x^3-x^2-9x+9=x^2\left(x-1\right)-9\left(x-1\right)\)
\(=\left(x^2-9\right)\left(x-1\right)=0\Rightarrow\orbr{\begin{cases}x^2-9=0\\x-1=0\end{cases}}\)
Từ đó tìm được tập nghiệm của f(x) là {-3;1;3}.
1)Cho đa thức:
f(x)=a+b(x-1). Tìm a,b biết x=0 là một nghiệm và f(1)=5
2)Cho đa thức f(x)=a+b(x-1)+x(x-1).Tìm a,b,c biết f(1)=2,f(0)=3 và 2 là một nghiệm của đa thức f(x)
giúp mình vs nha
Bài 1:Tìm giá trị của m để đa thức
a) f(x)=mx^2+2x+8 có một nghiệm là -1
b) g(x)=x4+3m^2x^3+3mx có một nghiệm là 1
Bài 2:Cho đa thức F(x)=1+x+x^2+...+X^201;G(x)=-x-x^3-x^5-...-x^201
a) Chứng tỏ x=-1 là nghiệm của đa thức F(x)
b) Đặt H(x)=F(x)+G(x).Tính H(2)
Ai hỗ trợ e vs ạ,phần này e chưa có học đến
tìm số a , biết rằng đa thức f(x) = \(a.x^2\)- \(a.x\)+10 có x = 2 là một nghiệm
Tại x=2, ta có:
f(2)=4a-2a+10=0
=> 2a=-10
=> a=-5
Thay x=2 vào nghiệm của đa thức f(x) ta có:
f(2)=a.22-a.2=0
=>4a-2a+10=0
=>2a+10=0
=>2a=0-10=-10
=>a=-10:2=-5
Vậy a=-5 tại x=2 là 1 nghiệm của đa thức f(x)
Cho các đa thức: f(x) = x ^ 2 - (m - 1) * x + 3m - 2 g(x) = x ^ 2 - 2(m + 1)x - 5m + 1 h(x) = - 2x ^ 2 + mx - 7m + 3 Tìm m, biết: 1. Đa thức f có nghiệm là –1 2. Đa thức g có nghiệm là 2 3. Đa thức h có nghiệm là –1 4. f(1) = g(2) 5. g(1) = h(- 2)
1: f(-1)=0
=>1+m-1+3m-2=0 và
=>4m-2=0
=>m=1/2
2: g(2)=0
=>2^2-4(m+1)-5m+1=0
=>4-5m+1-4m-4=0
=>-9m+1=0
=>m=1/9
4: f(1)=g(2)
=>1-(m-1)+3m-2=4-4(m+1)-5m+1
=>1-m+1+3m-2=4-4m-4-5m+1
=>2m-2=-9m+1
=>11m=3
=>m=3/11
3:
H(-1)=0
=>-2-m-7m+3=0
=>-8m=-1
=>m=1/8
5: g(1)=h(-2)
=>1-2(m+1)-5m+1=-8-2m-7m+3
=>-5m+2-2m-2=-9m-5
=>-7m=-9m-5
=>2m=-5
=>m=-5/2
tìm nghiệm của đa thức f(x)=a.x+b với f(1)=1 f(2)=3
\(f\left(1\right)=1\Leftrightarrow a+b=1\)
\(f\left(2\right)=3\Leftrightarrow2a+b=3\)
Ta có hệ phương trình \(\hept{\begin{cases}a+b=1\\2a+b=3\end{cases}}\Leftrightarrow\hept{\begin{cases}2a+2b=2\left(1\right)\\2a+b=3\left(2\right)\end{cases}}\)
Lấy (1) - (2) thì \(b=-1\Rightarrow a=1+1=2\)
Khi đó \(f\left(x\right)=2x-1\)
f(x) có nghiệm \(\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\)
Vậy nghiệm của f(x) là \(\frac{1}{2}\)
Bài 1. Tìm đa thức P(x) = x2 + ax + b. Biết rằng nghiệm của đa thức P(x) cũng là nghiệm của đa thức Q(x) = (x+2)(x-1)
Bài 2. Cho đa thức f(x) thỏa mãn f(x) + x f(-x) = x + 1 với mọi giá trị của x. Tính f(1)
Bài 3. Cho đa thức P(x) = x(x - 2) - 2x + 2m - 2015 (x là biến số, m là hằng số). Tìm m để đa thức có nghiệm.
a)cho đa thức f(x)=ax+b.Tìm điều kiện của a và b để f(7)=f(2)+f(3)
b) Tìm nghiệm của P(x)=(x-2).(2x+5)
c) Tìm hệ số a của P(x)= x^4+ax^2-4.
Biết rằng, đa thức này có 1 nghiệm là -2
a) Ta có f(7) = a7 + b và f(2) + f(3) = (a2+ b) + (a3 + b) = 5a + 2b. Vậy để f(7) = f(2) + f(3), ta cần giải phương trình:
a7 + b = 5a + 2b
Simplifying, ta được: 2a = b.
Vậy điều kiện của a và b để f(7) = f(2) + f(3) là b = 2a.
b) Để tìm nghiệm của P(x), ta cần giải phương trình (x-2)(2x+5) = 0:
(x-2)(2x+5)= 0
→ X-2 = 0 hoặc 2x+5 = 0
→ x = 2 hoặc x = -5/2
Vậy nghiệm của P(x) là x = 2 hoặc x =-5/2.
c) Ta biết rằng đa thức P(x) có 1 nghiệm là -2, vậy ta có thể viết P(x)
dưới dạng:
P(x) = (x+2)(x^3 - 2x^2 + ax - 2)
Từ đó suy ra:
P(-2) = (-2+2)(8 - 4a - 2) = 0
⇔-8a= 16
⇔a = -2
Vậy hệ số a của P(x) là -2.
tại sao a7 + b = 5a + 2b lại bằng 2a = b vậy ạ
Cho đa thức sau: f(x)=(x-1).(x+2). g(x)=x3 +a.x2 +b.x+2
Xác định a và b biết nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x)