Cho 50 số tự nhiên a1, a2, a3,...,a50 thỏa mãn 1/a1+1/a2+1/a3+...+1/a50=51/2. Chứng minh rằng trong 50 số đó có ít nhất 2 số bằng nhau.
Cho 50 số tự nhiên a1, a2, a3,...,a50 thỏa mãn 1 a1 1 a2 1 a3 ... 1 a50 51 2. Chứng minh rằng trong 50 số đó có ít nhất 2 số bằng nhau.
Giả sử a1;a2;a3;a4;........;a50a1;a2;a3;a4;........;a50 là 50 số tự nhân khác nhau và 0<a1<a2<a3<........<a500<a1<a2<a3<........<a50
⇒1a1+1a2+1a3+1a4+.....+1a50≤11+12+13+.....+150⇒1a1+1a2+1a3+1a4+.....+1a50≤11+12+13+.....+150
<1+12+12+....+12=1+492=512<1+12+12+....+12=1+492=512 (mâu thuẫn giả thiết)
⇒⇒Trong 50 số trên có ít nhất 2 số bằng nhau
cho 2017 số nguyên dương a1,a2,a3,a4,...,a2017 thõa mãn 1/a1+1/a2+1/a3+....+1/a2017=1009. chứng minh rằng có ít nhất hai trong 2017 số tự nhiên trên bằng nhau
Cho 2016 số nguyên dương a1, a2, a3, ... , a2016 thỏa mãn 1/a1+1/a2+...+1/a2016=30 Chứng minh rằng trong 2016 số dã cho tồn tại ít nhất 2 số bằng nhau
cho 100 số tự nhiên a1;a2;a3;a4;a5;....;a100 thỏa mãn 1/(a1)+1/(a2)+1/(a3)+....+1/(a100).cmr ít nhất có 2 số giống nhau
Giả sử 100 số đó đôi một khác nhau
Không mất tính tổng quát giả sử 0<a1<a2<a3<...<a1000<a1<a2<a3<...<a100
Vậy a1≥1;a2≥2;....;a100≥100a1≥1;a2≥2;....;a100≥100suy ra 1/a1+1/a2+...+1/a100≤1+12+13+...+11001a1+1a2+...+1a100≤1+1/2+1/3+...+1/100
⇒1/a1+1/a2+...+1/a100<1+1/2+1/2+...+1/2(99 phân số 1/2)
⇒1/a1+1/a2+...+1/a100<1/2.(2+99)=1/2.101=101/2trái với giả thiết.
Vì vậy điều giả sử sai, ta có điều phải chứng minh
1,Cho 2000 số A1,A2,A3,...A2000 là các số TN thỏa mãn: 1/A1+1/A2+1/A3+....+1/A2000=1. CMR tồn tại ít nhất 1 số Ak là số chẵn
2,Gọi A1,A2,A3,...A100 là các số TN thỏa mãn: 1/A21+1/A22+....+1/A1002=199/100. CMR có ít nhất 2 số TN trong các số trên =nhau
3,Cho 2021 số nguyên dương A1,A2,....,A2021 thỏa mãn 1/A1+1/A2+1/A3+.....+1/A2021=1011. CMR ít nhất 2 trong đó = nhau
Giúp mình với nha!
Cho 100 số tự nhiên a 1;a2;a3;...;a100 thỏa mãn : 1/a1+1/a2+...+1/a100=101/2. CMR ít nhất hai trong 100 số tự nhiên trên bằng nhau
ai nhanh minh se cho 4 tick nha !!!
Giả sử trong 100 số đó không có số nào bằng nhau a1 > a2>a3>.....a100
Mà a1,a2,a3,...,a100 thuộc Z
\(\Rightarrow\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+...+\frac{1}{a100}\le1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}< 1+\frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}=\frac{101}{2}\)(vôlý)
Vậy có ít nhất 2 số bằng nhau trong dãy số trên
Cho 100 số tự nhiên a 1;a2;a3;...;a100 thỏa mãn : 1/a1+1/a2+...+1/a100=101/2. CMR ít nhất hai trong 100 số tự nhiên trên bằng nhau
Ai nhanh nhất mình tick cho nha
Giả sử 100 số đó đôi một khác nhau
Không mất tính tổng quát giả sử \(0< a_1< a_2< a_3< ...< a_{100}\)
Vậy \(a_1\ge1;a_2\ge2;....;a_{100}\ge100\)suy ra \(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{100}}\le1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\)
\(\Rightarrow\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{100}}< 1+\frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}\)(99 phân số \(\frac{1}{2}\))
\(\Rightarrow\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{100}}< \frac{1}{2}.\left(2+99\right)=\frac{1}{2}.101=\frac{101}{2}\)trái với giả thiết.
Vì vậy điều giả sử sai, ta có điều phải chứng minh
1. Cho 25 số tự nhiên a1;a2;a3;a4;...a25 thỏa mãn điều kiện:
1/căn a1 +1/căn a2+....+1/căn a25 = 9
chứng minh trong 25 số tồn tại 2 số bằng nhau
Bài 1 : Cho a1 + a2 + ... + a50 + a51 = 0
Biết a1 + a2 = a3 + a4 = a5 + a6 ... = a49 + a50 = a50 + a51 = 1
Tính a50 ?
lm giúp mk vs, iu các bn
cho 2016 số nguyên dương a1 ;a2;a3;.....2016 thỏa mãn 1/a1+1/a2+...+1/a2016 cmr tồn tại ít nhất hai số bằng nhau