1) cho 25 số tự nhiên a1;a2;a3;....;a25 thỏa
\(\frac{1}{\sqrt{a1}}+\frac{1}{\sqrt{a2}}+...+\frac{1}{\sqrt{a25}}=9\).CM trong 25 số đó có 2 số bằng nhau
2) cho a,b,c là độ dài 3 cạnh tam giác.CMR \(\sqrt{2}\left(a+b+c\right)\le\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\le3\left(a+b+c\right)\)
3) cho a,b,c >0.CMR \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}>2\)
cho các số thực ko âm a1,a2,a3.a4,a5 thỏa mãn a1+a2+a3+a4+a5=1
tìm Max A=a1*a2+a2*a3+a3*a4+a4*a5
cho các số thực ko âm a1,a2,a3.a4,a5 thỏa mãn
a1+a2+a3+a4+a5=1
tìm Max A=a1*a2+a2*a3+a3*a4+a4*a5
1.Cho n >= 2. Chứng minh rằng tồn tại các số a1<a2<a3<...<an; a nguyên dương sao cho
1/a1^2 + 1/a2^2 +...+ 1/an^2 = 1/a^2
2.Cho 7 số tự nhiên phân biệt có tổng là 100. Chứng minh tồn tại 3 số có tổng lớn hơn hoặc bằng 50
Cho 2n số nguyên dương a1, a2, a3,......, a2n-1, a2n thỏa mãn:
a12 + a32 + a52 + ..... + a2n-12 = a22 + a42 + a562 + ..... + a2n2
Chứng minh rằng a1 + a2 + a3 + ...... + a2n-1 + a2n là hợp số (n \(\in\) N*)
Giúp em với ạ.
Cho 361 số tự nhiên a1, a2, a3, a361 thoả mãn điều kiện:
\(\dfrac{1}{\sqrt{a_1}}\) + \(\dfrac{1}{\sqrt{a_2}}\) + \(\dfrac{1}{\sqrt{a_3}}\) + ... + \(\dfrac{1}{\sqrt{a_{361}}}\) = 37
Chứng minh rằng trong 361 số tự nhiên đó, tồn tại ít nhất 2 số bằng nhau
cho 2015 số nguyên dương a1;a2;...;a2015 thỏa mãn điều kiện
\(\frac{1}{\sqrt{a_1}}+\frac{1}{\sqrt{a_2}}+\frac{1}{\sqrt{a_3}}+...+\frac{1}{\sqrt{a_{2015}}}\ge89\)
chứng minh rằng trong 2015 số nguyên dương đó luôn tồn tại ít nhất 2 sô bằng nhau
Cho số nguyên dương a1,a2,a3,...,a2015 tm điều kiện"
\(\frac{1}{\sqrt{a_1}}+\frac{1}{\sqrt{a_2}}+\frac{1}{\sqrt{a_3}}+...+\frac{1}{\sqrt{a_{2015}}}\ge89\)
CMR trong 2015 số nguyên dương đó , luôn tồn tại ít nhất 2 số bằng nhau.
Cho 25 số tự nhiên \(a_1,a_2,a_3,...,a_{25}\) thỏa điều kiện \(\dfrac{1}{\sqrt{a_1}}+\dfrac{1}{\sqrt{a_2}}+\dfrac{1}{\sqrt{a_3}}+...+\dfrac{1}{\sqrt{a_{25}}}=9\). Chứng minh rằng trong 25 số tự nhiên đó tồn tại 2 số bằng nhau.