cho tam giác ABC cân tại A (góc A nhỏ hơn 90 độ). Vẽ hai đường cao BH và CK cắt nhau tại I (H thuộc AC, K thuộc AB). Chứng minh rằng
a/ tam giác BCK = tam giácCBH
b/ tam giác BIC cân
cho tam giác abc cân tại a, hai đường cao bh và ck cắt nhau tại i(h thuộc ac; k thuộc ab) chứng minh tam giác BIC cân
Xét tam giác BKC vuông tại K và tam giác CHB vuông tại H
Ta có : BC là cạnh huyền chung
góc KBC = góc HCB ( tam giác ABC cân tại A )
Nên tam giác BKC = tam giác CHB ( cạnh huyền - góc nhọn )
=> góc KCB = góc HBC ( 2 góc tương ứng )
=> tam giác IBC cân tại I
giải:
Vì tam giác ABC cân tại A=>AB=AC, góc ABC= góc ACB
Xét tam giác BAH và tam giác CAK có:
tam giác BAH cân tại H
----------- CAK --------- K
cạnh huyền AB=AC
góc nhọn A chung
=> Tam giác BAH = tam giác CAK ( cạnh huyền-góc nhọn)
=> góc ABH= góc ACK
Mà góc ACB= góc ABC
=>góc IBC= góc ICB
=> tam giác BIC cân tại I
Cho tam giác ABC cân tại A ( Â<90°). Kẻ BH vuông góc AC ( H thuộc AC) , CK thuộc AB ( K thuộc AB).BH và CK cắt nhau tại E. a) Chứng minh tam giác BHC = tam giác CKB. b) Chứng minh tam giác ABC cân tại E
bn cho mình gửi sắp đến thi học kì 2 rồi. đây là những món quà mà bn sẽ nhận đc:
1: áo quần
2: tiền
3: đc nhiều người yêu quý
4: may mắn cả
5: luôn vui vẻ trong cuộc sống
6: đc crush thích thầm
7: học giỏi
8: trở nên xinh đẹp
phật sẽ ban cho bn những điều này nếu cậu gửi tin nhắn này cho 25 người, sau 3 ngày bn sẽ có những đc điều đó. nếu bn ko gửi tin nhắn này cho 25 người thì bn sẽ luôn gặp xui xẻo, học kì 2 bn sẽ là học sinh yếu và bạn bè xa lánh( lời nguyền sẽ bắt đầu từ khi đọc) ( mình
cũng bị ép);-;
cho tam giác ABC cân tại A ( A< 90 độ). kẻ BH vuông góc AC ( H thuộcAC ) C vuông góc AB ( K thuộc AB ) . BH và CK cắt nhau tạ E
A) chứng minh tam giác BHC =tam giác CKP
B) chứng minh tam giác EBC cân
a: Xét ΔKBC vuông tại K và ΔHCB vuông tại H có
BC chung
góc KBC=góc HCB
=>ΔKBC=ΔHCB
b: ΔKBC=ΔHCB
=>góc EBC=góc ECB
=>ΔEBC cân tại E
Cho tam giác ABC cân tại A .Kẻ BH vuông góc với AC; CK vuông góc với AB (H thuộc AC; K thuộc AB) a)Chứng minh tam giác AKH là tam giác cân b)Gọi I là giao của BH và CK;AI cắt BC tại M.Chứng minh rằng IM là phân giác của góc BIC c)Chứng minh :HK // BC
a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc HAB chung
=>ΔAHB=ΔAKC
=>AH=AK
b:
Xét ΔABC có
BH,CK là đường cao
BH cắt CK tại I
=>I là trực tâm
=>AI vuông góc BC tại M
Xét ΔKBC vuông tạiK và ΔHCB vuông tại H có
BC chung
KC=HB
=>ΔKBC=ΔHCB
=>góc IBC=góc ICB
=>ΔIBC cân tại I
mà IM là đường cao
nên IM là phân giác
c: Xet ΔBAC có AK/AB=AH/AC
nên KH//BC
Cho tam giác ABC cân tại A ( Â < 90*) vẽ BH vuông góc AC ( H thuộc AC ) CK vuông góc AB ( K thuộc AB )
a,Chứng minh rằng AH=AK
b,Gọi I là giao điểm cảu BH và CK. chứng minh tam giác BIC cân
c,Chứng minh AI là tia phân giác của Â
cho tam giác ABC cân tại A, vẽ BH vuông AC ( H thuộc AC ) , CK vuông AB ( K thuộc AB ) . gọi I là giao điểm BH và CK chứng minh rằng
a) tam giác BCH = tam giác CBK
b) CK = BH
c) tam giác BIC cân tại I
a) Xét tam giác BCH và tam giác CBK có
góc KBC = góc HCB ( vì tam giác ABC cân )
BC : cạnh chung
góc BKC = CHB = 90 độ (GT )
Từ 3 điều trên => Tam giác BCH = tam giác CBK (cạnh huyền - góc nhọn )
b) Vì tam giác BCH = tam giác CBK ( chứng minh ở câu a )
=> BH = CK ( cặp cạnh tương ứng )
c) Vì tam giác BCH = tam giác CBK ( câu a )
=> CH = BK ( 2 cạnh tương ứng )
Xét tam giác KIB và tam giác HIC có :
Góc KIB = góc HIC ( 2 góc đối đỉnh ) (1)
BK = CH ( chứng minh trên ) (2)
góc IKB = góc IHC = 90 độ (GT ) (3)
Từ (1) (2) và(3) => tam giác KIB = tam giác HIC ( g-c-g )
=> IB = IC ( cặp cạnh tương ứng )
=> tam giác BIC cân tại I
cho tam giác ABC cân tại A. kẻ BH vuông góc AC, CK vuông góc AB(H thuộc AC, K thuộc AB)
a)CM: tam giác AKH cân
b)Gọi I là giao của BH và CK, AI cắt BC tại M. Chứng minh IM là phân giác của BIC
a: Xet ΔAHB vuông tại H và ΔAKC vuông tại K có
góc BAH chung
AB=AC
=>ΔAHB=ΔAKC
=>AH=AK
=>ΔAHK cân tại A
b: góc ABH+góc HBC=góc ABC
gócACK+góc ICB=góc ACB
mà góc ABC=góc ACB; góc ABH=góc ACK
nên góc IBC=góc ICB
=>ΔIBC cân tại I
mà IM là đường cao
nên IM là phân giác của góc BIC
cho tam giác ABC cân tại A (góc A nhỏ hơn 90 độ). Vẽ hai đường cao BH và CK cắt nhau tại I (H thuộc AC, K thuộc AB). Chứng minh rằng
a/ tam giác BCK = tam giácCBH
b/ tam giác BIC cân
a) Tam giác BCK = Tam giác CBH (ch-gn)
b) Vì Tam giác BCK = Tam giác CBH (cmt) => góc HBC = góc KCB
=> Tam giác BIC cân
Cho tam giác ABC cân tại A góc A nhỏ hơn 90 độ vẽ BH vuông góc với AC H thuộc AC ck vuông góc với AB K thuộc AB Chứng minh chứng minh góc abh bằng góc ack
Vì ΔABC cân tại A (gt)
⇒ AB=AC
Vì BH⊥AC (gt)
⇒ ∠BHA=∠BHC=900
Vì CK⊥AB (gt)
⇒ ∠CKA=∠CKB=900
Xét ΔABH và ΔACK có:
∠BHA=∠CKA=900
∠BAC chung
AB=AC
⇒ ΔABH=ΔACK (cạnh huyền - góc nhọn)
⇒ ∠ABH=∠ACK (2 góc tương ứng)
Vậy ∠ABH=∠ACK